IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v144y2009i1p120-134.html
   My bibliography  Save this article

Folk theorem with communication

Author

Listed:
  • Obara, Ichiro

Abstract

This paper proves a new folk theorem for repeated games with private monitoring and communication, extending the idea of delayed communication in Compte [O. Compte, Communication in repeated games with imperfect private monitoring, Econometrica 66 (1998) 597-626] to the case where private signals are correlated. The sufficient condition for the folk theorem is generically satisfied with more than two players, even when other well-known conditions are not. The folk theorem also applies to some two-players repeated games.

Suggested Citation

  • Obara, Ichiro, 2009. "Folk theorem with communication," Journal of Economic Theory, Elsevier, vol. 144(1), pages 120-134, January.
  • Handle: RePEc:eee:jetheo:v:144:y:2009:i:1:p:120-134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022-0531(08)00052-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Johannes Hörner & Wojciech Olszewski, 2006. "The Folk Theorem for Games with Private Almost-Perfect Monitoring," Econometrica, Econometric Society, vol. 74(6), pages 1499-1544, November.
    2. Ben-Porath, Elchanan & Kahneman, Michael, 1996. "Communication in Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 70(2), pages 281-297, August.
    3. Robert J. Aumann, 1995. "Repeated Games with Incomplete Information," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011476, December.
    4. Richard McLean & Ichiro Obara & Andrew Postlewaite, 2001. "Informational Smallness and Private Monitoring in Repeated Games," PIER Working Paper Archive 05-024, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Jul 2005.
    5. Drew Fudenberg & David K. Levine, 2008. "The Nash-threats folk theorem with communication and approximate common knowledge in two player games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 15, pages 331-343, World Scientific Publishing Co. Pte. Ltd..
    6. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
    7. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    8. Drew Fudenberg & David K. Levine, 2008. "Efficiency and Observability with Long-Run and Short-Run Players," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 13, pages 275-307, World Scientific Publishing Co. Pte. Ltd..
    9. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    10. , J. & ,, 2006. "Coordination failure in repeated games with almost-public monitoring," Theoretical Economics, Econometric Society, vol. 1(3), pages 311-340, September.
    11. Abreu, Dilip & Milgrom, Paul & Pearce, David, 1991. "Information and Timing in Repeated Partnerships," Econometrica, Econometric Society, vol. 59(6), pages 1713-1733, November.
    12. Roy Radner, 1986. "Repeated Partnership Games with Imperfect Monitoring and No Discounting," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 43-57.
    13. Hitoshi Matsushima, 2004. "Repeated Games with Private Monitoring: Two Players," Econometrica, Econometric Society, vol. 72(3), pages 823-852, May.
    14. Michihiro Kandori & Hitoshi Matsushima, 1997. "Private observation and Communication and Collusion," Levine's Working Paper Archive 1256, David K. Levine.
    15. Bhaskar, V. & Obara, Ichiro, 2002. "Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 40-69, January.
    16. Olivier Compte, 1998. "Communication in Repeated Games with Imperfect Private Monitoring," Econometrica, Econometric Society, vol. 66(3), pages 597-626, May.
    17. Michihiro Kandori & Hitoshi Matsushima, 1998. "Private Observation, Communication and Collusion," Econometrica, Econometric Society, vol. 66(3), pages 627-652, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. , H. & ,, 2016. "Approximate efficiency in repeated games with side-payments and correlated signals," Theoretical Economics, Econometric Society, vol. 11(1), January.
    2. Yamamoto, Yuichi, 2009. "A limit characterization of belief-free equilibrium payoffs in repeated games," Journal of Economic Theory, Elsevier, vol. 144(2), pages 802-824, March.
    3. McLean, Richard & Obara, Ichiro & Postlewaite, Andrew, 2014. "Robustness of public equilibria in repeated games with private monitoring," Journal of Economic Theory, Elsevier, vol. 153(C), pages 191-212.
    4. Yamamoto, Yuichi, 2012. "Characterizing belief-free review-strategy equilibrium payoffs under conditional independence," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1998-2027.
    5. , J. & ,, 2006. "Coordination failure in repeated games with almost-public monitoring," Theoretical Economics, Econometric Society, vol. 1(3), pages 311-340, September.
    6. Miyagawa, Eiichi & Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2008. "The folk theorem for repeated games with observation costs," Journal of Economic Theory, Elsevier, vol. 139(1), pages 192-221, March.
    7. Fong, Kyna & Sannikov, Yuliy, 2007. "Efficiency in a Repeated Prisoners' Dilemma with Imperfect Private Monitoring," Department of Economics, Working Paper Series qt8vz4q9tr, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    8. Sugaya, Takuo & Yamamoto, Yuichi, 2020. "Common learning and cooperation in repeated games," Theoretical Economics, Econometric Society, vol. 15(3), July.
    9. Kandori, Michihiro, 2002. "Introduction to Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 1-15, January.
    10. Takuo Sugaya & Yuichi Yamamoto, 2019. "Common Learning and Cooperation in Repeated Games," PIER Working Paper Archive 19-008, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Drew Fudenberg & David K. Levine, 2008. "The Nash-threats folk theorem with communication and approximate common knowledge in two player games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 15, pages 331-343, World Scientific Publishing Co. Pte. Ltd..
    12. Yuichi Yamamoto, 2013. "Individual Learning and Cooperation in Noisy Repeated Games," PIER Working Paper Archive 13-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. Ashkenazi-Golan, Galit & Lehrer, Ehud, 2019. "What you get is what you see: Cooperation in repeated games with observable payoffs," Journal of Economic Theory, Elsevier, vol. 181(C), pages 197-237.
    14. Yuichi Yamamoto, 2012. "Individual Learning and Cooperation in Noisy Repeated Games," PIER Working Paper Archive 12-044, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    15. Fudenberg, Drew & Ishii, Yuhta & Kominers, Scott Duke, 2014. "Delayed-response strategies in repeated games with observation lags," Journal of Economic Theory, Elsevier, vol. 150(C), pages 487-514.
    16. Roman, Mihai Daniel, 2008. "Entreprises behavior in cooperative and punishment‘s repeated negotiations," MPRA Paper 37527, University Library of Munich, Germany, revised 05 Jan 2009.
    17. Laclau, M., 2014. "Communication in repeated network games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 87(C), pages 136-160.
    18. Heller, Yuval, 2017. "Instability of belief-free equilibria," Journal of Economic Theory, Elsevier, vol. 168(C), pages 261-286.
    19. Michihiro Kandori, 2011. "Weakly Belief‐Free Equilibria in Repeated Games With Private Monitoring," Econometrica, Econometric Society, vol. 79(3), pages 877-892, May.
    20. Heller, Yuval, 2015. "Instability of Equilibria with Imperfect Private Monitoring," MPRA Paper 64468, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:144:y:2009:i:1:p:120-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.