IDEAS home Printed from https://ideas.repec.org/p/cla/levrem/122247000000001105.html
   My bibliography  Save this paper

Coordination Failure in Repeated Games with Almost-Public Monitoring

Author

Listed:
  • George J Mailath
  • Stephen Morris

Abstract

Some private-monitoring games, that is, games with no public histories, can have histories that are almost public. These games are the natural result of perturbing public monitoring games towards private monitoring. We explore the extent to which it is possible to coordinate continuation play in such games. It is always possible to coordinate continuation play by requiring behavior to have bounded recall (i.e., there is a bound L such that in any period, the last L signals are sufficient to determine behavior). We show that, in games with general almost-public private monitoring, this is essentially the only behavior that can coordinate continuation play.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • George J Mailath & Stephen Morris, 2006. "Coordination Failure in Repeated Games with Almost-Public Monitoring," Levine's Bibliography 122247000000001105, UCLA Department of Economics.
  • Handle: RePEc:cla:levrem:122247000000001105
    as

    Download full text from publisher

    File URL: http://www.princeton.edu/%7Esmorris/pdfs/coordinationfailure.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bhaskar, V. & van Damme, Eric, 2002. "Moral Hazard and Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 16-39, January.
    2. Richard McLean & Ichiro Obara & Andrew Postlewaite, 2001. "Informational Smallness and Private Monitoring in Repeated Games," PIER Working Paper Archive 05-024, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Jul 2005.
    3. Drew Fudenberg & David K. Levine, 2008. "The Nash-threats folk theorem with communication and approximate common knowledge in two player games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 15, pages 331-343, World Scientific Publishing Co. Pte. Ltd..
    4. Richard McLean & Andrew Postlewaite, 2004. "Informational Size and Efficient Auctions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 809-827.
    5. V. Bhaskar, 1998. "Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(1), pages 135-149.
    6. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    7. V. Bhaskar & George J. Mailath & Stephen Morris, 2008. "Purification in the Infinitely-Repeated Prisoners' Dilemma," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 515-528, July.
    8. Johannes Hörner & Wojciech Olszewski, 2006. "The Folk Theorem for Games with Private Almost-Perfect Monitoring," Econometrica, Econometric Society, vol. 74(6), pages 1499-1544, November.
    9. Sekiguchi, Tadashi, 1997. "Efficiency in Repeated Prisoner's Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 76(2), pages 345-361, October.
    10. Jeffrey C. Ely & Johannes Hörner & Wojciech Olszewski, 2005. "Belief-Free Equilibria in Repeated Games," Econometrica, Econometric Society, vol. 73(2), pages 377-415, March.
    11. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    12. Kandori, Michihiro, 2002. "Introduction to Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 1-15, January.
    13. Glenn Ellison, 1994. "Theories of Cartel Stability and the Joint Executive Committee," RAND Journal of Economics, The RAND Corporation, vol. 25(1), pages 37-57, Spring.
    14. Hitoshi Matsushima, 2004. "Repeated Games with Private Monitoring: Two Players," Econometrica, Econometric Society, vol. 72(3), pages 823-852, May.
    15. Michihiro Kandori & Hitoshi Matsushima, 1997. "Private observation and Communication and Collusion," Levine's Working Paper Archive 1256, David K. Levine.
    16. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1990. "Toward a Theory of Discounted Repeated Games with Imperfect Monitoring," Econometrica, Econometric Society, vol. 58(5), pages 1041-1063, September.
    17. Monderer, Dov & Samet, Dov, 1989. "Approximating common knowledge with common beliefs," Games and Economic Behavior, Elsevier, vol. 1(2), pages 170-190, June.
    18. Bhaskar, V. & Obara, Ichiro, 2002. "Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 40-69, January.
    19. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
    20. Cole, Harold L. & Kocherlakota, Narayana R., 2005. "Finite memory and imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 53(1), pages 59-72, October.
    21. Piccione, Michele, 2002. "The Repeated Prisoner's Dilemma with Imperfect Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 70-83, January.
    22. Olivier Compte, 1998. "Communication in Repeated Games with Imperfect Private Monitoring," Econometrica, Econometric Society, vol. 66(3), pages 597-626, May.
    23. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    24. Michihiro Kandori & Hitoshi Matsushima, 1998. "Private Observation, Communication and Collusion," Econometrica, Econometric Society, vol. 66(3), pages 627-652, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamamoto, Yuichi, 2009. "A limit characterization of belief-free equilibrium payoffs in repeated games," Journal of Economic Theory, Elsevier, vol. 144(2), pages 802-824, March.
    2. , H. & ,, 2016. "Approximate efficiency in repeated games with side-payments and correlated signals," Theoretical Economics, Econometric Society, vol. 11(1), January.
    3. Yamamoto, Yuichi, 2012. "Characterizing belief-free review-strategy equilibrium payoffs under conditional independence," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1998-2027.
    4. McLean, Richard & Obara, Ichiro & Postlewaite, Andrew, 2014. "Robustness of public equilibria in repeated games with private monitoring," Journal of Economic Theory, Elsevier, vol. 153(C), pages 191-212.
    5. Fong, Kyna & Sannikov, Yuliy, 2007. "Efficiency in a Repeated Prisoners' Dilemma with Imperfect Private Monitoring," Department of Economics, Working Paper Series qt8vz4q9tr, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    6. Michihiro Kandori, 2011. "Weakly Belief‐Free Equilibria in Repeated Games With Private Monitoring," Econometrica, Econometric Society, vol. 79(3), pages 877-892, May.
    7. Heller, Yuval, 2015. "Instability of Equilibria with Imperfect Private Monitoring," MPRA Paper 64468, University Library of Munich, Germany.
    8. repec:pra:mprapa:64485 is not listed on IDEAS
    9. Takuo Sugaya & Yuichi Yamamoto, 2019. "Common Learning and Cooperation in Repeated Games," PIER Working Paper Archive 19-008, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Chen, Bo, 2010. "A belief-based approach to the repeated prisoners' dilemma with asymmetric private monitoring," Journal of Economic Theory, Elsevier, vol. 145(1), pages 402-420, January.
    11. Ashkenazi-Golan, Galit & Lehrer, Ehud, 2019. "What you get is what you see: Cooperation in repeated games with observable payoffs," Journal of Economic Theory, Elsevier, vol. 181(C), pages 197-237.
    12. Miyagawa, Eiichi & Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2008. "The folk theorem for repeated games with observation costs," Journal of Economic Theory, Elsevier, vol. 139(1), pages 192-221, March.
    13. Mailath, George J. & Olszewski, Wojciech, 2011. "Folk theorems with bounded recall under (almost) perfect monitoring," Games and Economic Behavior, Elsevier, vol. 71(1), pages 174-192, January.
    14. Heller, Yuval, 2017. "Instability of belief-free equilibria," Journal of Economic Theory, Elsevier, vol. 168(C), pages 261-286.
    15. Yuichi Yamamoto, 2013. "Individual Learning and Cooperation in Noisy Repeated Games," PIER Working Paper Archive 13-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    16. Yuichi Yamamoto, 2012. "Individual Learning and Cooperation in Noisy Repeated Games," PIER Working Paper Archive 12-044, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    18. Obara, Ichiro, 2009. "Folk theorem with communication," Journal of Economic Theory, Elsevier, vol. 144(1), pages 120-134, January.
    19. Sugaya, Takuo & Takahashi, Satoru, 2013. "Coordination failure in repeated games with private monitoring," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1891-1928.
    20. Drew Fudenberg & David K. Levine, 2008. "The Nash-threats folk theorem with communication and approximate common knowledge in two player games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 15, pages 331-343, World Scientific Publishing Co. Pte. Ltd..
    21. Sugaya, Takuo & Yamamoto, Yuichi, 2020. "Common learning and cooperation in repeated games," Theoretical Economics, Econometric Society, vol. 15(3), July.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levrem:122247000000001105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David K. Levine (email available below). General contact details of provider: http://www.dklevine.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.