IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/0210.html
   My bibliography  Save this paper

A Robust Folk Theorem for the Prisoners' Dilemma

Author

Listed:
  • Jeffrey Ely

    (Northwestern University)

Abstract

We prove the folk theorem for the Prisoner's dilemma using strategies that are robust to private monitoring. From this follows a limit folk theorem : when players are patient and monitoring is sufficiently accurate, (but private and possibly independent) any feasible individually rational payoff can be obtained in sequential equilibrium. The strategies used can be implemented by finite (randomizing) automata.

Suggested Citation

  • Jeffrey Ely, 2000. "A Robust Folk Theorem for the Prisoners' Dilemma," Econometric Society World Congress 2000 Contributed Papers 0210, Econometric Society.
  • Handle: RePEc:ecm:wc2000:0210
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/0210.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ichiro Obara, "undated". "The Repeated Prisoner's Dilemma with Private Monitoring: a N-player case," Penn CARESS Working Papers ba7f35f1c50de4503e241d127, Penn Economics Department.
    2. George J. Mailath & Stephen Morris, "undated". ""Repeated Games with Imperfect Private Monitoring: Notes on a Coordination Perspective''," CARESS Working Papres 98-07, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    3. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    4. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    5. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1990. "Toward a Theory of Discounted Repeated Games with Imperfect Monitoring," Econometrica, Econometric Society, vol. 58(5), pages 1041-1063, September.
    6. Green, Edward J & Porter, Robert H, 1984. "Noncooperative Collusion under Imperfect Price Information," Econometrica, Econometric Society, vol. 52(1), pages 87-100, January.
    7. Matsushima, Hitoshi, 1991. "On the theory of repeated games with private information : Part I: anti-folk theorem without communication," Economics Letters, Elsevier, vol. 35(3), pages 253-256, March.
    8. Fudenberg, Drew & Maskin, Eric, 1991. "On the dispensability of public randomization in discounted repeated games," Journal of Economic Theory, Elsevier, vol. 53(2), pages 428-438, April.
    9. V. Bhaskar, 1998. "Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(1), pages 135-149.
    10. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    11. Radner, Roy, 1985. "Repeated Principal-Agent Games with Discounting," Econometrica, Econometric Society, vol. 53(5), pages 1173-1198, September.
    12. Glenn Ellison, 1994. "Cooperation in the Prisoner's Dilemma with Anonymous Random Matching," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(3), pages 567-588.
    13. Sekiguchi, Tadashi, 1997. "Efficiency in Repeated Prisoner's Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 76(2), pages 345-361, October.
    14. Lehrer, E, 1989. "Lower Equilibrium Payoffs in Two-Player Repeated Games with Non-observable Actions," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(1), pages 57-89.
    15. Bhaskar, V. & Obara, Ichiro, 2002. "Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 40-69, January.
    16. Piccione, Michele, 2002. "The Repeated Prisoner's Dilemma with Imperfect Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 70-83, January.
    17. Lehrer, E, 1990. "Nash Equilibria of n-Player Repeated Games with Semi-standard Information," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 191-217.
    18. Ichiro Obara, 2000. "Private Strategy and Efficiency: Repeated Partnership Games Revisited," Econometric Society World Congress 2000 Contributed Papers 1449, Econometric Society.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanley Reiter, 1999. "Coordination of Economic Activity: An Example," Discussion Papers 1263, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Bhaskar, V. & Obara, Ichiro, 2002. "Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 40-69, January.
    3. Kandori, Michihiro, 2002. "Introduction to Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 1-15, January.
    4. Bhaskar, V. & van Damme, Eric, 2002. "Moral Hazard and Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 16-39, January.
    5. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    6. Miyagawa, Eiichi & Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2008. "The folk theorem for repeated games with observation costs," Journal of Economic Theory, Elsevier, vol. 139(1), pages 192-221, March.
    7. Ashkenazi-Golan, Galit & Lehrer, Ehud, 2019. "What you get is what you see: Cooperation in repeated games with observable payoffs," Journal of Economic Theory, Elsevier, vol. 181(C), pages 197-237.
    8. Ichiro Obara, "undated". "The Repeated Prisoner's Dilemma with Private Monitoring: a N-player case," Penn CARESS Working Papers ba7f35f1c50de4503e241d127, Penn Economics Department.
    9. Chen, Bo, 2010. "A belief-based approach to the repeated prisoners' dilemma with asymmetric private monitoring," Journal of Economic Theory, Elsevier, vol. 145(1), pages 402-420, January.
    10. Gossner, Olivier & Hörner, Johannes, 2010. "When is the lowest equilibrium payoff in a repeated game equal to the minmax payoff?," Journal of Economic Theory, Elsevier, vol. 145(1), pages 63-84, January.
    11. , J. & ,, 2006. "Coordination failure in repeated games with almost-public monitoring," Theoretical Economics, Econometric Society, vol. 1(3), pages 311-340, September.
    12. Marco Battaglini & Stephen Coate, 2008. "A Dynamic Theory of Public Spending, Taxation, and Debt," American Economic Review, American Economic Association, vol. 98(1), pages 201-236, March.
    13. Jehiel, Philippe & Samuelson, Larry, 2023. "The analogical foundations of cooperation," Journal of Economic Theory, Elsevier, vol. 208(C).
    14. Jeffery Ely & Johannes Horner & Wojciech Olszewski, 2004. "Strategic Commitment Versus Flexibility in a Duopoloy with Entry and Exit," Discussion Papers 1381, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    15. Michihiro Kandori, 2011. "Weakly Belief‐Free Equilibria in Repeated Games With Private Monitoring," Econometrica, Econometric Society, vol. 79(3), pages 877-892, May.
    16. McLean, Richard & Obara, Ichiro & Postlewaite, Andrew, 2014. "Robustness of public equilibria in repeated games with private monitoring," Journal of Economic Theory, Elsevier, vol. 153(C), pages 191-212.
    17. Yamamoto, Yuichi, 2012. "Characterizing belief-free review-strategy equilibrium payoffs under conditional independence," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1998-2027.
    18. Sekiguchi, Tadashi, 1997. "Efficiency in Repeated Prisoner's Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 76(2), pages 345-361, October.
    19. Yamamoto, Yuichi, 2009. "A limit characterization of belief-free equilibrium payoffs in repeated games," Journal of Economic Theory, Elsevier, vol. 144(2), pages 802-824, March.
    20. Heller, Yuval, 2017. "Instability of belief-free equilibria," Journal of Economic Theory, Elsevier, vol. 168(C), pages 261-286.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.