IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v68y2015i8p1792-1799.html
   My bibliography  Save this article

Improving forecasts using equally weighted predictors

Author

Listed:
  • Graefe, Andreas

Abstract

The usual procedure for developing linear models to predict any kind of target variable is to identify a subset of most important predictors and to estimate weights that provide the best possible solution for a given sample. The resulting “optimally” weighted linear composite is then used when predicting new data. This approach is useful in situations with large and reliable datasets and few predictor variables. However, a large body of analytical and empirical evidence since the 1970s shows that such optimal variable weights are of little, if any, value in situations with small and noisy datasets and a large number of predictor variables. In such situations, which are common for social science problems, including all relevant variables is more important than their weighting. These findings have yet to impact many fields. This study uses data from nine U.S. election-forecasting models whose vote-share forecasts are regularly published in academic journals to demonstrate the value of (a) weighting all predictors equally and (b) including all relevant variables in the model. Across the ten elections from 1976 to 2012, equally weighted predictors yielded a lower forecast error than regression weights for six of the nine models. On average, the error of the equal-weights models was 5% lower than the error of the original regression models. An equal-weights model that uses all 27 variables that are included in the nine models missed the final vote-share results of the ten elections on average by only 1.3 percentage points. This error is 48% lower than the error of the typical, and 29% lower than the error of the most accurate, regression model.

Suggested Citation

  • Graefe, Andreas, 2015. "Improving forecasts using equally weighted predictors," Journal of Business Research, Elsevier, vol. 68(8), pages 1792-1799.
  • Handle: RePEc:eee:jbrese:v:68:y:2015:i:8:p:1792-1799
    DOI: 10.1016/j.jbusres.2015.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296315001563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2015.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lichtman, Allan J., 2008. "The keys to the white house: An index forecast for 2008," International Journal of Forecasting, Elsevier, vol. 24(2), pages 301-309.
    2. Cuzán, Alfred G. & Bundrick, Charles M., 2009. "Predicting Presidential Elections with Equally Weighted Regressors in Fair's Equation and the Fiscal Model," Political Analysis, Cambridge University Press, vol. 17(3), pages 333-340, July.
    3. David E. Runkle, 1998. "Revisionist history: how data revisions distort economic policy research," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 22(Fall), pages 3-12.
    4. Clintin Davis-Stober & Jason Dana & David Budescu, 2010. "A Constrained Linear Estimator for Multiple Regression," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 521-541, September.
    5. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    6. Armstrong, J. Scott & Graefe, Andreas, 2011. "Predicting elections from biographical information about candidates: A test of the index method," Journal of Business Research, Elsevier, vol. 64(7), pages 699-706, July.
    7. Montgomery, Jacob M. & Hollenbach, Florian M. & Ward, Michael D., 2012. "Improving Predictions using Ensemble Bayesian Model Averaging," Political Analysis, Cambridge University Press, vol. 20(3), pages 271-291, July.
    8. Graefe, Andreas & Armstrong, J. Scott, 2008. "Forecasting Elections from Voters’ Perceptions of Candidates’ Positions on Issues and Policies," MPRA Paper 9829, University Library of Munich, Germany.
    9. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    10. Ostrom, Charles W. & Simon, Dennis M., 1985. "Promise and Performance: A Dynamic Model of Presidential Popularity," American Political Science Review, Cambridge University Press, vol. 79(2), pages 334-358, June.
    11. Graefe, Andreas & Armstrong, J. Scott, 2011. "Conditions under which index models are useful: Reply to bio-index commentaries," Journal of Business Research, Elsevier, vol. 64(7), pages 693-695, July.
    12. Clintin Davis-Stober, 2011. "A Geometric Analysis of When Fixed Weighting Schemes Will Outperform Ordinary Least Squares," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 650-669, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    2. López, Ana M. & Flores, Mario A. & Sánchez, Juan I., 2017. "Modelos de series temporales aplicados a la predicción del tráfico aeroportuario español de pasajeros: Un enfoque agregado y desagregado/Forecasting of Spanish Passenger Air Traffic Based on Time Seri," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 395-418, Mayo.
    3. Andreas Graefe, 2018. "Predicting elections: Experts, polls, and fundamentals," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(4), pages 334-344, July.
    4. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzan, Alfred G., 2017. "Assessing the 2016 U.S. Presidential Election Popular Vote Forecasts," MPRA Paper 83282, University Library of Munich, Germany.
    5. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
    6. Tessier, Thomas H. & Armstrong, J. Scott, 2015. "Decomposition of time-series by level and change," Journal of Business Research, Elsevier, vol. 68(8), pages 1755-1758.
    7. Blanc, Sebastian M. & Setzer, Thomas, 2016. "When to choose the simple average in forecast combination," Journal of Business Research, Elsevier, vol. 69(10), pages 3951-3962.
    8. López, Ana M., 2016. "El papel de la información económica como generador de conocimiento en el proceso de predicción: comparaciones empíricas del crecimiento del PIB regional /The Role of Economic Information as a Generat," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 34, pages 543-572, Agosto.
    9. López Menéndez, Ana Jesús & Pérez Suárez, Rigoberto, 2017. "Forecasting Performance and Information Measures. Revisiting the M-Competition /Evaluación de Predicciones y Medidas de Información. Reexamen de la M-Competición," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 299-314, Mayo.
    10. Woike, Jan K. & Hoffrage, Ulrich & Petty, Jeffrey S., 2015. "Picking profitable investments: The success of equal weighting in simulated venture capitalist decision making," Journal of Business Research, Elsevier, vol. 68(8), pages 1705-1716.
    11. Katsikopoulos, Konstantinos V. & Durbach, Ian N. & Stewart, Theodor J., 2018. "When should we use simple decision models? A synthesis of various research strands," Omega, Elsevier, vol. 81(C), pages 17-25.
    12. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    13. Andreas Graefe & Kesten C Green & J Scott Armstrong, 2019. "Accuracy gains from conservative forecasting: Tests using variations of 19 econometric models to predict 154 elections in 10 countries," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-14, January.
    14. repec:cup:judgdm:v:13:y:2018:i:4:p:334-344 is not listed on IDEAS
    15. Christina Gibson-Davis & Anna Gassman-Pines & Rebecca Lehrman, 2018. "“His” and “Hers”: Meeting the Economic Bar to Marriage," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2321-2343, December.
    16. Fildes, Robert & Petropoulos, Fotios, 2015. "Is there a Golden Rule?," Journal of Business Research, Elsevier, vol. 68(8), pages 1742-1745.
    17. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    18. Muye Chen & Michel Regenwetter & Clintin P. Davis-Stober, 2021. "Collective Choice May Tell Nothing About Anyone’s Individual Preferences," Decision Analysis, INFORMS, vol. 18(1), pages 1-24, March.
    19. Deepa Mishra & Angappa Gunasekaran & Thanos Papadopoulos & Stephen J. Childe, 2018. "Big Data and supply chain management: a review and bibliometric analysis," Annals of Operations Research, Springer, vol. 270(1), pages 313-336, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    2. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    3. Graefe, Andreas, 2023. "Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)," International Journal of Forecasting, Elsevier, vol. 39(1), pages 170-177.
    4. Andreas Graefe & Kesten C Green & J Scott Armstrong, 2019. "Accuracy gains from conservative forecasting: Tests using variations of 19 econometric models to predict 154 elections in 10 countries," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-14, January.
    5. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    6. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
    7. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzan, Alfred G., 2017. "Assessing the 2016 U.S. Presidential Election Popular Vote Forecasts," MPRA Paper 83282, University Library of Munich, Germany.
    8. Tessier, Thomas H. & Armstrong, J. Scott, 2015. "Decomposition of time-series by level and change," Journal of Business Research, Elsevier, vol. 68(8), pages 1755-1758.
    9. Armstrong, J. Scott & Graefe, Andreas, 2011. "Predicting elections from biographical information about candidates: A test of the index method," Journal of Business Research, Elsevier, vol. 64(7), pages 699-706, July.
    10. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    11. Armstrong, J. Scott & Graefe, Andreas, 2009. "Predicting Elections from Biographical Information about Candidates," MPRA Paper 16461, University Library of Munich, Germany.
    12. Cote, Joseph A., 2011. "Predicting elections from biographical information about candidates: A commentary essay," Journal of Business Research, Elsevier, vol. 64(7), pages 696-698, July.
    13. Andreas Graefe, 2018. "Predicting elections: Experts, polls, and fundamentals," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(4), pages 334-344, July.
    14. Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
    15. Bunker, Kenneth, 2020. "A two-stage model to forecast elections in new democracies," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1407-1419.
    16. Rothschild, David, 2015. "Combining forecasts for elections: Accurate, relevant, and timely," International Journal of Forecasting, Elsevier, vol. 31(3), pages 952-964.
    17. repec:cup:judgdm:v:13:y:2018:i:4:p:334-344 is not listed on IDEAS
    18. Munzert, Simon, 2017. "Forecasting elections at the constituency level: A correction–combination procedure," International Journal of Forecasting, Elsevier, vol. 33(2), pages 467-481.
    19. Karen E. Dynan & Douglas W. Elmendorf, 2001. "Do provisional estimates of output miss economic turning points?," Finance and Economics Discussion Series 2001-52, Board of Governors of the Federal Reserve System (U.S.).
    20. Jason Barabas, 1998. "Wage Erosion, Economic Assessments, and Social Welfare Opinions," JCPR Working Papers 56, Northwestern University/University of Chicago Joint Center for Poverty Research.
    21. Frederick H. Wallace & Gary L. Shelley & Luis F. Cabrera Castellanos, 2004. "Pruebas de la neutralidad monetaria a largo plazo: el caso de Nicaragua," Monetaria, CEMLA, vol. 0(4), pages 407-418, octubre-d.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:68:y:2015:i:8:p:1792-1799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.