IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v186y2025ics0148296324004855.html
   My bibliography  Save this article

Post hoc explanations improve consumer responses to algorithmic decisions

Author

Listed:
  • Mourali, Mehdi
  • Novakowski, Dallas
  • Pogacar, Ruth
  • Brigden, Neil

Abstract

Algorithms are capable of assisting with, or making, critical decisions in many areas of consumers’ lives. Algorithms have consistently outperformed human decision-makers in multiple domains, and the list of cases where algorithms can make superior decisions will only grow as the technology evolves. Nevertheless, many people distrust algorithmic decisions. One concern is their lack of transparency. For instance, it is often unclear how a machine learning algorithm produces a given prediction. To address the problem, organizations have started providing post-hoc explanations of the logic behind their algorithmic decisions. However, it remains unclear to what extent explanations can improve consumer attitudes and intentions. Five experiments demonstrate that algorithmic explanations can improve perceptions of transparency, attitudes, and behavioral intentions – or they can backfire, depending on the explanation method used. The most effective explanations highlight concrete and feasible steps consumers can take to positively influence their future decision outcomes.

Suggested Citation

  • Mourali, Mehdi & Novakowski, Dallas & Pogacar, Ruth & Brigden, Neil, 2025. "Post hoc explanations improve consumer responses to algorithmic decisions," Journal of Business Research, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:jbrese:v:186:y:2025:i:c:s0148296324004855
    DOI: 10.1016/j.jbusres.2024.114981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296324004855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2024.114981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:186:y:2025:i:c:s0148296324004855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.