IDEAS home Printed from https://ideas.repec.org/a/eee/jouret/v100y2024i3p345-361.html
   My bibliography  Save this article

Bargaining with algorithms: How consumers respond to offers proposed by algorithms versus humans

Author

Listed:
  • Shen, Zhengyu
  • Jin, Liyin

Abstract

The rapid integration of artificial intelligence (AI) into negotiations has catalyzed a transformative change in the retail industry. This study analyzes consumer responses to AI negotiators—a scenario becoming more common as retailers employ sophisticated algorithms in negotiation practices. Through five studies spanning B2C, B2B, and C2C negotiations, the findings reveal that consumers tend to make fewer adjustments to their counteroffers when bargaining with algorithms, persuaded of algorithms’ decision-making precision and comprehensive market intelligence. Notably, this confidence in algorithmic accuracy has a disproportionate effect on individuals from lower socioeconomic backgrounds, which can be mitigated by casting doubt on AI's infallibility. These insights do not merely provide retailers with a tactical advantage in utilizing AI for negotiations but also highlight the necessity for a more profound and ethical interaction with technology. Understanding the dynamics of human‒algorithm interaction in negotiation contexts allows retailers and brands to navigate this new terrain with greater efficacy and mindfulness.

Suggested Citation

  • Shen, Zhengyu & Jin, Liyin, 2024. "Bargaining with algorithms: How consumers respond to offers proposed by algorithms versus humans," Journal of Retailing, Elsevier, vol. 100(3), pages 345-361.
  • Handle: RePEc:eee:jouret:v:100:y:2024:i:3:p:345-361
    DOI: 10.1016/j.jretai.2024.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022435924000198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretai.2024.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiara Longoni & Andrea Bonezzi & Carey K Morewedge, 2019. "Resistance to Medical Artificial Intelligence," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(4), pages 629-650.
    2. Imai, Lynn & Gelfand, Michele J., 2010. "The culturally intelligent negotiator: The impact of cultural intelligence (CQ) on negotiation sequences and outcomes," Organizational Behavior and Human Decision Processes, Elsevier, vol. 112(2), pages 83-98, July.
    3. Logg, Jennifer M. & Minson, Julia A. & Moore, Don A., 2019. "Algorithm appreciation: People prefer algorithmic to human judgment," Organizational Behavior and Human Decision Processes, Elsevier, vol. 151(C), pages 90-103.
    4. Qi Feng & Guoming Lai & Lauren Xiaoyuan Lu, 2015. "Dynamic Bargaining in a Supply Chain with Asymmetric Demand Information," Management Science, INFORMS, vol. 61(2), pages 301-315, February.
    5. Marchand, André & Marx, Paul, 2020. "Automated Product Recommendations with Preference-Based Explanations," Journal of Retailing, Elsevier, vol. 96(3), pages 328-343.
    6. Guha, Abhijit & Grewal, Dhruv & Kopalle, Praveen K. & Haenlein, Michael & Schneider, Matthew J. & Jung, Hyunseok & Moustafa, Rida & Hegde, Dinesh R. & Hawkins, Gary, 2021. "How artificial intelligence will affect the future of retailing," Journal of Retailing, Elsevier, vol. 97(1), pages 28-41.
    7. Alavi, Sascha & Wieseke, Jan & Guba, Jan H., 2016. "Saving on Discounts through Accurate Sensing – Salespeople's Estimations of Customer Price Importance and Their Effects on Negotiation Success," Journal of Retailing, Elsevier, vol. 92(1), pages 40-55.
    8. de Bellis, Emanuel & Venkataramani Johar, Gita, 2020. "Autonomous Shopping Systems: Identifying and Overcoming Barriers to Consumer Adoption," Journal of Retailing, Elsevier, vol. 96(1), pages 74-87.
    9. von Walter, Benjamin & Wentzel, Daniel & Raff, Stefan, 2023. "Should service firms introduce algorithmic advice to their existing customers? The moderating effect of service relationships," Journal of Retailing, Elsevier, vol. 99(2), pages 280-296.
    10. Dengfeng Yan & Jorge Pena-Marin, 2017. "Round Off the Bargaining: The Effects of Offer Roundness on Willingness to Accept," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(2), pages 381-395.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
    2. Hermann, Erik & Puntoni, Stefano, 2024. "Artificial intelligence and consumer behavior: From predictive to generative AI," Journal of Business Research, Elsevier, vol. 180(C).
    3. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    4. Li, Sixian & Peluso, Alessandro M. & Duan, Jinyun, 2023. "Why do we prefer humans to artificial intelligence in telemarketing? A mind perception explanation," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    5. Erik Hermann & Gizem Yalcin Williams & Stefano Puntoni, 2024. "Deploying artificial intelligence in services to AID vulnerable consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1431-1451, October.
    6. Huang, Ming-Hui & Rust, Roland T., 2022. "A Framework for Collaborative Artificial Intelligence in Marketing," Journal of Retailing, Elsevier, vol. 98(2), pages 209-223.
    7. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    8. Zhu, Yimin & Zhang, Jiemin & Wu, Jifei & Liu, Yingyue, 2022. "AI is better when I'm sure: The influence of certainty of needs on consumers' acceptance of AI chatbots," Journal of Business Research, Elsevier, vol. 150(C), pages 642-652.
    9. Benedikt Berger & Martin Adam & Alexander Rühr & Alexander Benlian, 2021. "Watch Me Improve—Algorithm Aversion and Demonstrating the Ability to Learn," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(1), pages 55-68, February.
    10. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
    11. repec:cup:judgdm:v:15:y:2020:i:3:p:449-451 is not listed on IDEAS
    12. Peng, Leiqing & Luo, Mengting & Guo, Yulang, 2023. "Deposit AI as the “invisible hand†to make the resale easier: A moderated mediation model," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    13. Chen, Yaqi & Wang, Haizhong & Rao Hill, Sally & Li, Binglian, 2024. "Consumer attitudes toward AI-generated ads: Appeal types, self-efficacy and AI’s social role," Journal of Business Research, Elsevier, vol. 185(C).
    14. Chiara Longoni & Andrea Bonezzi & Carey K. Morewedge, 2020. "Resistance to medical artificial intelligence is an attribute in a compensatory decision process: response to Pezzo and Becksted (2020)," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(3), pages 446-448, May.
    15. Brüns, Jasper David & Meißner, Martin, 2024. "Do you create your content yourself? Using generative artificial intelligence for social media content creation diminishes perceived brand authenticity," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    16. David A. Schweidel & Yakov Bart & J. Jeffrey Inman & Andrew T. Stephen & Barak Libai & Michelle Andrews & Ana Babić Rosario & Inyoung Chae & Zoey Chen & Daniella Kupor & Chiara Longoni & Felipe Thomaz, 2022. "How consumer digital signals are reshaping the customer journey," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1257-1276, November.
    17. Chen Yang & Jing Hu, 2022. "When do consumers prefer AI-enabled customer service? The interaction effect of brand personality and service provision type on brand attitudes and purchase intentions," Journal of Brand Management, Palgrave Macmillan, vol. 29(2), pages 167-189, March.
    18. Chugunova, Marina & Sele, Daniela, 2022. "We and It: An interdisciplinary review of the experimental evidence on how humans interact with machines," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 99(C).
    19. Zhang, Lixuan & Yencha, Christopher, 2022. "Examining perceptions towards hiring algorithms," Technology in Society, Elsevier, vol. 68(C).
    20. Lidan Xu & Ravi Mehta, 2022. "Technology devalues luxury? Exploring consumer responses to AI-designed luxury products," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1135-1152, November.
    21. von Walter, Benjamin & Wentzel, Daniel & Raff, Stefan, 2023. "Should service firms introduce algorithmic advice to their existing customers? The moderating effect of service relationships," Journal of Retailing, Elsevier, vol. 99(2), pages 280-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jouret:v:100:y:2024:i:3:p:345-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.