IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v6y2006i4p337-347.html
   My bibliography  Save this article

The square-root process and Asian options

Author

Listed:
  • Angelos Dassios
  • Jayalaxshmi Nagaradjasarma

Abstract

Although the square-root process has long been used as an alternative to the Black-Scholes geometric Brownian motion model for option valuation, the pricing of Asian options on this diffusion model has never been studied analytically. However, the additivity property of the square-root process makes it a very suitable model for the analysis of Asian options. In this paper, we develop explicit prices for digital and regular Asian options. We also obtain distributional results concerning the square-root process and its average over time, including analytic formulae for their joint density and moments. We also show that the distribution is actually determined by those moments.

Suggested Citation

  • Angelos Dassios & Jayalaxshmi Nagaradjasarma, 2006. "The square-root process and Asian options," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 337-347.
  • Handle: RePEc:taf:quantf:v:6:y:2006:i:4:p:337-347
    DOI: 10.1080/14697680600724775
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680600724775
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680600724775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    2. Daniel Dufresne, 2000. "Laguerre Series for Asian and Other Options," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 407-428, October.
    3. Chen, Ren-Raw & Scott, Louis O, 1992. "Pricing Interest Rate Options in a Two-Factor Cox-Ingersoll-Ross Model of the Term Structure," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 613-636.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Beckers, Stan, 1980. "The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    6. Yoosef Maghsoodi, 1996. "Solution Of The Extended Cir Term Structure And Bond Option Valuation," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 89-109, January.
    7. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    8. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    9. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
    10. Moshe Arye Milevsky & Steven E. Posner, 1999. "Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 7, pages 203-218, World Scientific Publishing Co. Pte. Ltd..
    11. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    12. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    13. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    14. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    15. C. F. Lo & P. H. Yuen & C. H. Hui, 2001. "Pricing Barrier Options With Square Root Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(05), pages 805-818.
    16. Boyle, Phelim P. & Tian, Yisong “Sam”, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 241-264, June.
    17. Jan Vecer & Mingxin Xu, 2004. "Pricing Asian options in a semimartingale model," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 170-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Prayoga & Nicolas Privault, 2017. "Pricing CIR Yield Options by Conditional Moment Matching," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(1), pages 19-38, March.
    2. Angelos Dassios & Luting Li, 2018. "An Economic Bubble Model and Its First Passage Time," Papers 1803.08160, arXiv.org.
    3. Fusai, Gianluca & Marena, Marina & Roncoroni, Andrea, 2008. "Analytical pricing of discretely monitored Asian-style options: Theory and application to commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2033-2045, October.
    4. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    5. Plat, Richard & Pelsser, Antoon, 2009. "Analytical approximations for prices of swap rate dependent embedded options in insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 124-134, February.
    6. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    7. Dan Pirjol & Lingjiong Zhu, 2024. "Short-maturity asymptotics for option prices with interest rates effects," Papers 2402.14161, arXiv.org.
    8. Park, Jong Jun & Jang, Hyun Jin & Jang, Jiwook, 2020. "Pricing arithmetic Asian options under jump diffusion CIR processes," Finance Research Letters, Elsevier, vol. 34(C).
    9. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    10. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    11. Dan Pirjol & Lingjiong Zhu, 2016. "Short Maturity Asian Options in Local Volatility Models," Papers 1609.07559, arXiv.org.
    12. Jang, Jiwook & Qu, Yan & Zhao, Hongbiao & Dassios, Angelos, 2023. "A Cox model for gradually disappearing events," LSE Research Online Documents on Economics 112754, London School of Economics and Political Science, LSE Library.
    13. Wugan Cai & Jiafeng Pan, 2017. "Stochastic Differential Equation Models for the Price of European CO 2 Emissions Allowances," Sustainability, MDPI, vol. 9(2), pages 1-12, February.
    14. Dan Pirjol & Lingjiong Zhu, 2017. "Short Maturity Asian Options for the CEV Model," Papers 1702.03382, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dassios, Angelos & Nagaradjasarma, Jayalaxshmi, 2006. "The square-root process and Asian options," LSE Research Online Documents on Economics 2851, London School of Economics and Political Science, LSE Library.
    2. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. Campi, Luciano & Polbennikov, Simon & Sbuelz, Alessandro, 2009. "Systematic equity-based credit risk: A CEV model with jump to default," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 93-108, January.
    5. Dassios, Angelos & Nagaradjasarma, Jayalaxshmi, 2011. "Pricing of Asian options on interest rates in the CIR model," LSE Research Online Documents on Economics 32084, London School of Economics and Political Science, LSE Library.
    6. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    7. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    8. Campi, L. & Polbennikov, S.Y. & Sbuelz, A., 2005. "Assessing Credit with Equity : A CEV Model with Jump to Default," Discussion Paper 2005-27, Tilburg University, Center for Economic Research.
    9. Campi, L. & Sbuelz, A., 2005. "Close-Form Pricing of Benchmark Equity Default Swaps Under the CEV Assumption," Discussion Paper 2005-28, Tilburg University, Center for Economic Research.
    10. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    11. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    12. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    13. Luciano Campi & Simon Polbennikov & Sbuelz, 2005. "Assessing Credit with Equity: A CEV Model with Jump to Default," Working Papers 24/2005, University of Verona, Department of Economics.
    14. Igor V. Kravchenko & Vladislav V. Kravchenko & Sergii M. Torba & Jos'e Carlos Dias, 2017. "Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation," Papers 1712.08247, arXiv.org.
    15. Akira Yamazaki, 2014. "Pricing average options under time-changed Lévy processes," Review of Derivatives Research, Springer, vol. 17(1), pages 79-111, April.
    16. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    17. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    18. Lingjiong Zhu, 2015. "Short maturity options for Azéma–Yor martingales," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-32, December.
    19. Campi, L. & Sbuelz, A., 2005. "Close-Form Pricing of Benchmark Equity Default Swaps Under the CEV Assumption," Other publications TiSEM f10edfa3-d4c3-489b-bffe-4, Tilburg University, School of Economics and Management.
    20. Jiang, George & Yan, Shu, 2009. "Linear-quadratic term structure models - Toward the understanding of jumps in interest rates," Journal of Banking & Finance, Elsevier, vol. 33(3), pages 473-485, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:6:y:2006:i:4:p:337-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.