IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/2851.html
   My bibliography  Save this paper

The square-root process and Asian options

Author

Listed:
  • Dassios, Angelos
  • Nagaradjasarma, Jayalaxshmi

Abstract

Although the square-root process has long been used as an alternative to the Black-Scholes geometric Brownian motion model for option valuation, the pricing of Asian options on this diffusion model has never been studied analytically. However, the additivity property of the square-root process makes it a very suitable model for the analysis of Asian options. In this paper, we develop explicit prices for digital and regular Asian options. We also obtain distributional results concerning the square-root process and its average over time, including analytic formulae for their joint density and moments. We also show that the distribution is actually determined by those moments.

Suggested Citation

  • Dassios, Angelos & Nagaradjasarma, Jayalaxshmi, 2006. "The square-root process and Asian options," LSE Research Online Documents on Economics 2851, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:2851
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/2851/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    2. Daniel Dufresne, 2000. "Laguerre Series for Asian and Other Options," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 407-428, October.
    3. Chen, Ren-Raw & Scott, Louis O, 1992. "Pricing Interest Rate Options in a Two-Factor Cox-Ingersoll-Ross Model of the Term Structure," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 613-636.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Beckers, Stan, 1980. "The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    6. Yoosef Maghsoodi, 1996. "Solution Of The Extended Cir Term Structure And Bond Option Valuation," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 89-109, January.
    7. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    8. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    9. Moshe Arye Milevsky & Steven E. Posner, 1999. "Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 7, pages 203-218, World Scientific Publishing Co. Pte. Ltd..
    10. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    11. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    14. C. F. Lo & P. H. Yuen & C. H. Hui, 2001. "Pricing Barrier Options With Square Root Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(05), pages 805-818.
    15. Boyle, Phelim P. & Tian, Yisong “Sam”, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 241-264, June.
    16. Jan Vecer & Mingxin Xu, 2004. "Pricing Asian options in a semimartingale model," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 170-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Prayoga & Nicolas Privault, 2017. "Pricing CIR Yield Options by Conditional Moment Matching," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(1), pages 19-38, March.
    2. Angelos Dassios & Luting Li, 2018. "An Economic Bubble Model and Its First Passage Time," Papers 1803.08160, arXiv.org.
    3. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    4. Plat, Richard & Pelsser, Antoon, 2009. "Analytical approximations for prices of swap rate dependent embedded options in insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 124-134, February.
    5. Dan Pirjol & Lingjiong Zhu, 2016. "Short Maturity Asian Options in Local Volatility Models," Papers 1609.07559, arXiv.org.
    6. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    7. Park, Jong Jun & Jang, Hyun Jin & Jang, Jiwook, 2020. "Pricing arithmetic Asian options under jump diffusion CIR processes," Finance Research Letters, Elsevier, vol. 34(C).
    8. Jang, Jiwook & Qu, Yan & Zhao, Hongbiao & Dassios, Angelos, 2023. "A Cox model for gradually disappearing events," LSE Research Online Documents on Economics 112754, London School of Economics and Political Science, LSE Library.
    9. Wugan Cai & Jiafeng Pan, 2017. "Stochastic Differential Equation Models for the Price of European CO 2 Emissions Allowances," Sustainability, MDPI, vol. 9(2), pages 1-12, February.
    10. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    11. Dan Pirjol & Lingjiong Zhu, 2017. "Short Maturity Asian Options for the CEV Model," Papers 1702.03382, arXiv.org.
    12. Fusai, Gianluca & Marena, Marina & Roncoroni, Andrea, 2008. "Analytical pricing of discretely monitored Asian-style options: Theory and application to commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2033-2045, October.
    13. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelos Dassios & Jayalaxshmi Nagaradjasarma, 2006. "The square-root process and Asian options," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 337-347.
    2. Dassios, Angelos & Nagaradjasarma, Jayalaxshmi, 2011. "Pricing of Asian options on interest rates in the CIR model," LSE Research Online Documents on Economics 32084, London School of Economics and Political Science, LSE Library.
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    5. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    6. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    7. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    8. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    9. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    10. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    11. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    12. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    13. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    14. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    15. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    16. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    17. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    18. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    19. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    20. Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012. "A spectral estimation of tempered stable stochastic volatility models and option pricing," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.

    More about this item

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:2851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.