IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v94y2021ics0969699721000600.html
   My bibliography  Save this article

Route optimization for energy efficient airport shuttle operations – A case study from Dallas Fort worth International Airport

Author

Listed:
  • Sigler, Devon
  • Wang, Qichao
  • Liu, Zhaocai
  • Garikapati, Venu
  • Kotz, Andrew
  • Kelly, Kenneth J.
  • Lunacek, Monte
  • Phillips, Caleb

Abstract

The objective of this research is to reduce energy consumption from intra airport shuttle operations by optimizing routes and schedules, without compromising on passenger travel experience. To achieve this objective, we propose an optimization model that generates optimal airport shuttle routes for a given set of constraints and a discrete-event simulator that evaluates the optimal shuttle routes in a stochastic environment to understand the tradeoffs between the amount of time passengers wait for shuttles, and shuttle energy consumption. The proposed optimization model and stochastic simulation are tested using shuttle route data provided by the Dallas Fort Worth International Airport. Results indicate that optimized routes can lead to a 20% energy reduction in shuttle operations with a modest 2-min increase in average shuttle wait times. The optimization model and simulator presented here are designed to be generalizable and can be adapted to optimize shuttle operations at any major airport.

Suggested Citation

  • Sigler, Devon & Wang, Qichao & Liu, Zhaocai & Garikapati, Venu & Kotz, Andrew & Kelly, Kenneth J. & Lunacek, Monte & Phillips, Caleb, 2021. "Route optimization for energy efficient airport shuttle operations – A case study from Dallas Fort worth International Airport," Journal of Air Transport Management, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:jaitra:v:94:y:2021:i:c:s0969699721000600
    DOI: 10.1016/j.jairtraman.2021.102077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699721000600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2021.102077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Fang & Zeng, Xiaogang, 2008. "Optimization of transit route network, vehicle headways and timetables for large-scale transit networks," European Journal of Operational Research, Elsevier, vol. 186(2), pages 841-855, April.
    2. Jou, Rong-Chang & Hensher, David A. & Hsu, Tzu-Lan, 2011. "Airport ground access mode choice behavior after the introduction of a new mode: A case study of Taoyuan International Airport in Taiwan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(3), pages 371-381, May.
    3. Budd, Thomas & Ryley, Tim & Ison, Stephen, 2014. "Airport ground access and private car use: a segmentation analysis," Journal of Transport Geography, Elsevier, vol. 36(C), pages 106-115.
    4. Steven I-JY Chien, 2005. "Optimization Of Headway, Vehicle Size and Route Choice for Minimum Cost Feeder Service," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(5), pages 359-380, August.
    5. William E. Hart & Carl D. Laird & Jean-Paul Watson & David L. Woodruff & Gabriel A. Hackebeil & Bethany L. Nicholson & John D. Siirola, 2017. "Pyomo — Optimization Modeling in Python," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-58821-6, December.
    6. Budd, Lucy & Ison, Stephen & Budd, Thomas, 2016. "Improving the environmental performance of airport surface access in the UK: The role of public transport," Research in Transportation Economics, Elsevier, vol. 59(C), pages 185-195.
    7. Danwen Bao & Jiayu Gu & Zhiwei Di & Tianxuan Zhang, 2018. "Optimization of Airport Shuttle Bus Routes Based on Travel Time Reliability," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhaocai & Wang, Qichao & Sigler, Devon & Kotz, Andrew & Kelly, Kenneth J. & Lunacek, Monte & Phillips, Caleb & Garikapati, Venu, 2023. "Data-driven simulation-based planning for electric airport shuttle systems: A real-world case study," Applied Energy, Elsevier, vol. 332(C).
    2. Ma, Jiaxin & Chen, Xumei & Xing, Ziwen & Zhang, Yixin & Yu, Lei, 2023. "Improving the performance of airport shuttle through demand-responsive service with dynamic fare strategy considering mixed demand," Journal of Air Transport Management, Elsevier, vol. 112(C).
    3. Ming Wei & Congxin Yang & Tao Liu, 2022. "An Integrated Multi-Objective Optimization for Dynamic Airport Shuttle Bus Location, Route Design and Departure Frequency Setting Problem," IJERPH, MDPI, vol. 19(21), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avogadro, Nicolò & Birolini, Sebastian & Redondi, Renato & Deforza, Paolo, 2024. "Assessing airport ground access interventions: An integrated approach combining mode choice modeling and microscopic traffic simulation," Transport Policy, Elsevier, vol. 148(C), pages 154-167.
    2. Ugirumurera, Juliette & Severino, Joseph & Ficenec, Karen & Ge, Yanbo & Wang, Qichao & Williams, Lindy & Chae, Junghoon & Lunacek, Monte & Phillips, Caleb, 2021. "A modeling framework for designing and evaluating curbside traffic management policies at Dallas-Fort Worth International Airport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 130-150.
    3. Yazdanpanah, Mahdi & Hosseinlou, Mansour Hadji, 2016. "The influence of personality traits on airport public transport access mode choice: A hybrid latent class choice modeling approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 147-163.
    4. Zaidan, Esmat & Abulibdeh, Ammar, 2018. "Modeling ground access mode choice behavior for Hamad International Airport in the 2022 FIFA World Cup city, Doha, Qatar," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 32-45.
    5. Gokasar, Ilgin & Gunay, Gurkan, 2017. "Mode choice behavior modeling of ground access to airports: A case study in Istanbul, Turkey," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 1-7.
    6. Dariusz Tłoczyński & Agnieszka Szmelter-Jarosz & Sebastian Susmarski, 2022. "Analysis of Sustainable Transport Systems in Service of Selected SEA-EU Consortium Countries’ Airports—A Pilot Case Study of Passenger Choices for Gdańsk Airport," IJERPH, MDPI, vol. 19(2), pages 1-21, January.
    7. Kristoffersson, Ida & Berglund , Svante, 2020. "Modelling connection trips to long-distance travel : state-of-the-art and directions for future research," Papers 2020:5, Research Programme in Transport Economics.
    8. Raúl Hernández-Martín & Hugo Padrón-Ávila, 2021. "The Carbon Footprint of Airport Ground Access as Part of an Outbound Holiday Trip," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    9. Xingjian Liu, 2020. "Assessing airport ground access by public transport in Chinese cities," Urban Studies, Urban Studies Journal Limited, vol. 57(2), pages 267-285, February.
    10. E. Codina & A. Marín & F. López, 2013. "A model for setting services on auxiliary bus lines under congestion," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 48-83, April.
    11. Ahmed Eid & May Salah & Mahmoud Barakat & Matevz Obrecht, 2022. "Airport Sustainability Awareness: A Theoretical Framework," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    12. Yao, Haifang & Huang, Yingying & Liu, Jinsong, 2023. "Study on travel behavior characteristics of air passengers in an airport hinterland," Journal of Air Transport Management, Elsevier, vol. 112(C).
    13. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    14. Islam, Md. Kamrul & Vandenbona, Upali & Dixit, Vinayak V. & Sharma, Ashish, 2015. "A Simplified Method for Performance Evaluation of Public Transit Under Reneging Behavior of Passengers," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 54(3).
    15. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    16. Samanta, Sutapa & Jha, Manoj K., 2011. "Modeling a rail transit alignment considering different objectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 31-45, January.
    17. Mahtab Kaffash & Glenn Ceusters & Geert Deconinck, 2021. "Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation," Energies, MDPI, vol. 14(10), pages 1-20, May.
    18. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.
    19. John V. Colias & Stella Park & Elizabeth Horn, 2021. "Optimizing B2B product offers with machine learning, mixed logit, and nonlinear programming," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(3), pages 157-172, September.
    20. Pelagie Elimbi Moudio & Cristobal Pais & Zuo-Jun Max Shen, 2021. "Quantifying the impact of ecosystem services for landscape management under wildfire hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 531-560, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:94:y:2021:i:c:s0969699721000600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.