IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v69y2018icp215-223.html
   My bibliography  Save this article

Network performance and competitive impact of the single hub – A case study on Turkish Airlines and Emirates

Author

Listed:
  • Logothetis, Michail
  • Miyoshi, Chikage

Abstract

This paper introduces a new model for evaluating connectivity at hub airports. The Hub Connectivity Performance Analyser (HCPA), developed in this context, assesses both schedule- and comfort-related attributes of indirect flights and consolidates the results into two indexes: the Hub Connectivity Performance Index (HCPI) and the Hub Efficiency Index (φ). The proposed methodology is used to derive conclusions about the hub performance and efficiency of two modern influential super-connectors: Turkish Airlines and Emirates. Connectivity at Istanbul Atatürk and Dubai International airports is therefore evaluated for the said carriers and their alliance code-sharing partners. Historical growth and key O&D flows targeted by each carrier are identified and benchmarked to establish the competitive impact of their hubs. Findings indicate that Emirates operates an ultra-efficient hub, which has superior performance to that of Turkish Airlines; however, in a market-breakdown basis, the dominance is split between the two carriers. Given that both Istanbul Atatürk and Dubai International operate near capacity, the study concludes that the way forward for both carriers is either to opt for up-gauging their fleet or targeting higher hub efficiency.

Suggested Citation

  • Logothetis, Michail & Miyoshi, Chikage, 2018. "Network performance and competitive impact of the single hub – A case study on Turkish Airlines and Emirates," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 215-223.
  • Handle: RePEc:eee:jaitra:v:69:y:2018:i:c:p:215-223
    DOI: 10.1016/j.jairtraman.2016.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699716302332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2016.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danesi, Antonio, 2006. "Measuring airline hub timetable co-ordination and connectivity: definition of a new index and application to a sample of European hubs," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 54-74.
    2. Veldhuis, Jan, 1997. "The competitive position of airline networks," Journal of Air Transport Management, Elsevier, vol. 3(4), pages 181-188.
    3. Li, Wenkan Ken & Miyoshi, Chikage & Pagliari, Romano, 2012. "Dual-hub network connectivity: An analysis of all Nippon Airways’ use of Tokyo’s Haneda and Narita airports," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 12-16.
    4. Burghouwt, Guillaume & de Wit, Jaap, 2005. "Temporal configurations of European airline networks," Journal of Air Transport Management, Elsevier, vol. 11(3), pages 185-198.
    5. Malighetti, Paolo & Paleari, Stefano & Redondi, Renato, 2008. "Connectivity of the European airport network: “Self-help hubbing†and business implications," Journal of Air Transport Management, Elsevier, vol. 14(2), pages 53-65.
    6. Bania, Neil & Bauer, Paul W. & Zlatoper, Thomas J., 1998. "U.S. Air Passenger Service: a Taxonomy of Route Networks, Hub Locations, and Competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(1), pages 53-74, March.
    7. Philipp Goedeking, 2010. "Networks in Aviation," Springer Books, Springer, number 978-3-642-13764-8, June.
    8. Suau-Sanchez, Pere & Burghouwt, Guillaume, 2012. "Connectivity levels and the competitive position of Spanish airports and Iberia’s network rationalization strategy, 2001–2007," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 47-53.
    9. Dennis, Nigel, 1994. "Scheduling strategies for airline hub operations," Journal of Air Transport Management, Elsevier, vol. 1(3), pages 131-144.
    10. Seredyński, Adam & Rothlauf, Franz & Grosche, Tobias, 2014. "An airline connection builder using maximum connection lag with greedy parameter selection," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 120-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grosche, Tobias & Klophaus, Richard & Seredyński, Adam, 2020. "Market concentration in German air transport before and after the Air Berlin bankruptcy," Transport Policy, Elsevier, vol. 94(C), pages 78-88.
    2. Qi Zhang & Bo Wang & Desheng Xue, 2022. "The Hub Competition in Delivering Air Connectivity between China and Oceania," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    3. Nenem, Sukru & Graham, Anne & Dennis, Nigel, 2020. "Airline schedule and network competitiveness: A consumer-centric approach for business travel," Annals of Tourism Research, Elsevier, vol. 80(C).
    4. Wong, W.H. & Cheung, Tommy & Zhang, Anming & Wang, Yue, 2019. "Is spatial dispersal the dominant trend in air transport development? A global analysis for 2006–2015," Journal of Air Transport Management, Elsevier, vol. 74(C), pages 1-12.
    5. Cheung, Tommy K.Y. & Wong, Collin WH. & Lei, Zheng, 2022. "Assessment of hub airports' connectivity and Self-Connection Potentials," Transport Policy, Elsevier, vol. 127(C), pages 250-259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O’Connell, John F. & Bueno, Oriol Escofet, 2018. "A study into the hub performance Emirates, Etihad Airways and Qatar Airways and their competitive position against the major European hubbing airlines," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 257-268.
    2. Seredyński, Adam & Rothlauf, Franz & Grosche, Tobias, 2014. "An airline connection builder using maximum connection lag with greedy parameter selection," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 120-128.
    3. Redondi, Renato & Birolini, Sebastian & Morlotti, Chiara & Paleari, Stefano, 2021. "Connectivity measures and passengers’ behavior: Comparing conventional connectivity models to predict itinerary market shares," Journal of Air Transport Management, Elsevier, vol. 90(C).
    4. Chang, Yu-Chun & Lee, Wei-Hao & Hsu, Chia-Jui, 2020. "Identifying competitive position for ten Asian aviation hubs," Transport Policy, Elsevier, vol. 87(C), pages 51-66.
    5. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor, 2015. "Regulatory airport classification in the US: The role of international markets," Transport Policy, Elsevier, vol. 37(C), pages 157-166.
    6. Qi Zhang & Bo Wang & Desheng Xue, 2022. "The Hub Competition in Delivering Air Connectivity between China and Oceania," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    7. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor, 2016. "Measuring the potential for self-connectivity in global air transport markets: Implications for airports and airlines," Journal of Transport Geography, Elsevier, vol. 57(C), pages 70-82.
    8. Zeigler, Patrick & Pagliari, Romano & Suau-Sanchez, Pere & Malighetti, Paolo & Redondi, Renato, 2017. "Low-cost carrier entry at small European airports: Low-cost carrier effects on network connectivity and self-transfer potential," Journal of Transport Geography, Elsevier, vol. 60(C), pages 68-79.
    9. Boonekamp, Thijs & Burghouwt, Guillaume, 2017. "Measuring connectivity in the air freight industry," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 81-94.
    10. Lenaerts, Bert & Allroggen, Florian & Malina, Robert, 2021. "The economic impact of aviation: A review on the role of market access," Journal of Air Transport Management, Elsevier, vol. 91(C).
    11. Piltz, Christopher & Voltes-Dorta, Augusto & Suau-Sanchez, Pere, 2018. "A comparative analysis of hub connections of European and Asian airports against Middle Eastern hubs in intercontinental markets," Journal of Air Transport Management, Elsevier, vol. 66(C), pages 1-12.
    12. Chang, Yu-Chun & Lee, Wei-Hao & Wu, Chi-Hung, 2019. "Potential opportunities for Asian airports to develop self-connecting passenger markets," Journal of Air Transport Management, Elsevier, vol. 77(C), pages 7-16.
    13. Allroggen, Florian & Wittman, Michael D. & Malina, Robert, 2015. "How air transport connects the world – A new metric of air connectivity and its evolution between 1990 and 2012," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 184-201.
    14. Grosche, Tobias & Klophaus, Richard & Seredyński, Adam, 2017. "Competition for long-haul connecting traffic among airports in Europe and the Middle East," Journal of Air Transport Management, Elsevier, vol. 64(PA), pages 3-14.
    15. Akça, Zeliha, 2018. "Comparative analysis with a new hub connectivity measure considering revenue and passenger demand," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 34-45.
    16. Wang, Yu-Chen & Wong, Jinn-Tsai, 2019. "Exploring air network formation and development with a two-part model," Journal of Transport Geography, Elsevier, vol. 75(C), pages 122-131.
    17. Zhang, Shengrun & Zheng, Hailong & Chen, Yuting & Witlox, Frank, 2020. "Factors influencing the hub connectivity of Beijing Capital Airport in its international markets," Journal of Air Transport Management, Elsevier, vol. 88(C).
    18. Lieshout, Rogier & Matsumoto, Hidenobu, 2012. "New international services and the competitiveness of Tokyo International Airport," Journal of Transport Geography, Elsevier, vol. 22(C), pages 53-64.
    19. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor, 2017. "An assessment of the potential for self-connectivity at European airports in holiday markets," Tourism Management, Elsevier, vol. 62(C), pages 54-64.
    20. Lu, Mengyuan & Perez, Edgar Jimenez & Mason, Keith & He, Yin, 2024. "Fractal assessment analysis of China's air-HSR network integration," Journal of Transport Geography, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:69:y:2018:i:c:p:215-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.