IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v66y2018icp13-24.html
   My bibliography  Save this article

Network-based queuing model for simulating passenger throughput at an airport security checkpoint

Author

Listed:
  • Li, Yongli
  • Gao, Xin
  • Xu, Zhiwei
  • Zhou, Xuanrui

Abstract

This paper models different passenger strategies, shows potential network structures, and compares different performance cases for queuing at airport security checkpoints. Our findings show that different network structures require different passenger strategies to achieve optimal performance. The open network structure performs significantly better than the restrictive one, and the allocation of more security staff for baggage checking improves performance under the precondition that the total number of security staff remains constant. We also find that the combination of n M/M/1 systems will perform almost the same or even better than the M/M/n system when the passengers' strategies and feelings are considered. Based on these findings, some practical insights are provided on how to improve airport security checkpoints.

Suggested Citation

  • Li, Yongli & Gao, Xin & Xu, Zhiwei & Zhou, Xuanrui, 2018. "Network-based queuing model for simulating passenger throughput at an airport security checkpoint," Journal of Air Transport Management, Elsevier, vol. 66(C), pages 13-24.
  • Handle: RePEc:eee:jaitra:v:66:y:2018:i:c:p:13-24
    DOI: 10.1016/j.jairtraman.2017.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699717301503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2017.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James R. Jackson, 1957. "Networks of Waiting Lines," Operations Research, INFORMS, vol. 5(4), pages 518-521, August.
    2. Kim, Gukhwa & Kim, Junbeom & Chae, Junjae, 2017. "Balancing the baggage handling performance of a check-in area shared by multiple airlines," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 31-49.
    3. Daganzo, Carlos F. & Knoop, Victor L., 2016. "Traffic flow on pedestrianized streets," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 211-222.
    4. Marta Podemska-Mikluch & Richard E. Wagner, 2017. "Economic Coordination across Divergent Institutional Frameworks: Dissolving a Theoretical Antinomy," Review of Political Economy, Taylor & Francis Journals, vol. 29(2), pages 249-266, April.
    5. de Lange, Robert & Samoilovich, Ilya & van der Rhee, Bo, 2013. "Virtual queuing at airport security lanes," European Journal of Operational Research, Elsevier, vol. 225(1), pages 153-165.
    6. Benjamin L. Schwartz, 1974. "Queuing Models with Lane Selection: A New Class of Problems," Operations Research, INFORMS, vol. 22(2), pages 331-339, April.
    7. Kierzkowski, Artur & Kisiel, Tomasz, 2017. "Simulation model of security control system functioning: A case study of the Wroclaw Airport terminal," Journal of Air Transport Management, Elsevier, vol. 64(PB), pages 173-185.
    8. Pitchforth, Jegar & Wu, Paul & Fookes, Clinton & Mengersen, Kerrie, 2015. "Processing passengers efficiently: An analysis of airport processing times for international passengers," Journal of Air Transport Management, Elsevier, vol. 49(C), pages 35-45.
    9. Kjell Hausken & Jun Zhuang (ed.), 2015. "Game Theoretic Analysis of Congestion, Safety and Security," Springer Series in Reliability Engineering, Springer, edition 127, number 978-3-319-11674-7, September.
    10. Ronald R. Gilliam, 1979. "An Application of Queueing Theory to Airport Passenger Security Screening," Interfaces, INFORMS, vol. 9(4), pages 117-123, August.
    11. Kjell Hausken & Jun Zhuang (ed.), 2015. "Game Theoretic Analysis of Congestion, Safety and Security," Springer Series in Reliability Engineering, Springer, edition 127, number 978-3-319-13009-5, September.
    12. Hainen, Alexander M. & Remias, Stephen M. & Bullock, Darcy M. & Mannering, Fred L., 2013. "A hazard-based analysis of airport security transit times," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 32-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kierzkowski, Artur & Kisiel, Tomasz, 2020. "Simulation model of security control lane operation in the state of the COVID-19 epidemic," Journal of Air Transport Management, Elsevier, vol. 88(C).
    2. Artur Kierzkowski & Tomasz Kisiel, 2021. "Feasibility of Reducing Operator-to-Passenger Contact for Passenger Screening at the Airport with Respect to the Power Consumption of the System," Energies, MDPI, vol. 14(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skorupski, Jacek & Uchroński, Piotr, 2018. "Evaluation of the effectiveness of an airport passenger and baggage security screening system," Journal of Air Transport Management, Elsevier, vol. 66(C), pages 53-64.
    2. Rodríguez-Sanz, à lvaro & Fernández de Marcos, Alberto & Pérez-Castán, Javier A. & Comendador, Fernando Gómez & Arnaldo Valdés, Rosa & París Loreiro, à ngel, 2021. "Queue behavioural patterns for passengers at airport terminals: A machine learning approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    3. Puneet Agarwal & Kyle Hunt & Shivasubramanian Srinivasan & Jun Zhuang, 2020. "Fire Code Inspection and Compliance: A Game-Theoretic Model Between Fire Inspection Agencies and Building Owners," Decision Analysis, INFORMS, vol. 17(3), pages 208-226, September.
    4. R. Piccinelli & G. Sansavini & R. Lucchetti & E. Zio, 2017. "A General Framework for the Assessment of Power System Vulnerability to Malicious Attacks," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2182-2190, November.
    5. Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
    6. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    7. Nogal, Maria & O'Connor, Alan & Caulfield, Brian & Martinez-Pastor, Beatriz, 2016. "Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 84-96.
    8. Ding, Tao & Yao, Li & Li, Fangxing, 2018. "A multi-uncertainty-set based two-stage robust optimization to defender–attacker–defender model for power system protection," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 179-186.
    9. Partha Chakroborty & Rahul Gill & Pranamesh Chakraborty, 2016. "Analysing queueing at toll plazas using a coupled, multiple-queue, queueing system model: application to toll plaza design," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(7), pages 675-692, October.
    10. Jennifer Sommer & Joost Berkhout & Hans Daduna & Bernd Heidergott, 2017. "Analysis of Jackson networks with infinite supply and unreliable nodes," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 181-207, October.
    11. Skorupski, Jacek & Uchroński, Piotr, 2017. "A fuzzy model for evaluating metal detection equipment at airport security screening checkpoints," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 39-48.
    12. Jacobson, Sheldon H. & Kobza, John E. & Nakayama, Marvin K., 2000. "A sampling procedure to estimate risk probabilities in access-control security systems," European Journal of Operational Research, Elsevier, vol. 122(1), pages 123-132, April.
    13. Marina Milenković & Miloš Nikolić & Draženko Glavić, 2022. "Optimization of toll road lane operation: Serbian case study," Operational Research, Springer, vol. 22(5), pages 5297-5322, November.
    14. Amarjit Budhiraja & Chihoon Lee, 2009. "Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 45-56, February.
    15. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    16. Rosario Delgado, 2010. "State space collapse and stability of queueing networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 477-499, December.
    17. Ward Whitt & Wei You, 2022. "New decomposition approximations for queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 365-367, April.
    18. Francisco Castro & Hamid Nazerzadeh & Chiwei Yan, 2020. "Matching queues with reneging: a product form solution," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 359-385, December.
    19. Sauer Cornelia & Daduna Hans, 2003. "Availability Formulas and Performance Measures for Separable Degradable Networks," Stochastics and Quality Control, De Gruyter, vol. 18(2), pages 165-194, January.
    20. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:66:y:2018:i:c:p:13-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.