IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v103y2022ics0969699722000709.html
   My bibliography  Save this article

Towards a greener Extended-Arrival Manager in air traffic control: A heuristic approach for dynamic speed control using machine-learned delay prediction model

Author

Listed:
  • Zhi Jun, Lim
  • Alam, Sameer
  • Dhief, Imen
  • Schultz, Michael

Abstract

Extended Arrivals Manager (E-AMAN) is a concept that reduces congestion and holding time in the Terminal Maneuver Airspace (TMA) by managing the arrival aircraft during the en-route phase. However, current E-AMAN deployment is only limited to a horizon of 150–200 NM from the airport, restricting the window of opportunity for any early intervention, and the prediction of delay in TMA remains a challenge given the inherent uncertainties in the air traffic environment. In this context, this research work presents an approach for predicting, transferring and absorbing the flight delays and holdings from the highly constrained TMA to the en-route phase using both data-driven and optimisation techniques. First, a method is developed to estimate holding time and TMA delay from historical data. Next, a Machine Learning based prediction framework is developed to predict holdings and delays in the TMA, from an extended horizon of 300–500 NM from the airport. Finally, a heuristics-based optimisation model is developed for dynamic speed management to transfer TMA delays to the en-route phase. To demonstrate the model's efficacy, a case study for Singapore airspace is developed using associated one-day air-traffic data. Four sets of experiments are designed to evaluate the performance of the speed management framework under different flight cooperation levels. For the experiment with the highest number of cooperative flights, the implementation of dynamic speed shows a transfer of 179 min of TMA delay to the en-route phase, equivalent to 65% of the initial TMA delay. This results in an estimated fuel saving of 1524 kg along with a reduction in carbon dioxide emissions of 48000 kg. The findings demonstrate that E-AMAN, for extended horizon with predictive delay modelling and dynamic speed management, has the potential to manage TMA congestion and reduce fuel consumption and emissions, therefore mitigating the environmental impact.

Suggested Citation

  • Zhi Jun, Lim & Alam, Sameer & Dhief, Imen & Schultz, Michael, 2022. "Towards a greener Extended-Arrival Manager in air traffic control: A heuristic approach for dynamic speed control using machine-learned delay prediction model," Journal of Air Transport Management, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:jaitra:v:103:y:2022:i:c:s0969699722000709
    DOI: 10.1016/j.jairtraman.2022.102250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699722000709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2022.102250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    2. James C. Jones & David J. Lovell & Michael O. Ball, 2018. "Stochastic Optimization Models for Transferring Delay Along Flight Trajectories to Reduce Fuel Usage," Transportation Science, INFORMS, vol. 52(1), pages 134-149, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra, Aitichya & Choubey, Nipun & Verma, Ashish & Sooraj, K.P., 2024. "Quasi-stochastic optimization model for time-based arrival scheduling considering Standard Terminal Arrival (STAR) track time and a new delay-conflict relationship," Journal of Air Transport Management, Elsevier, vol. 115(C).
    2. Khan, Waqar Ahmed & Chung, Sai-Ho & Eltoukhy, Abdelrahman E.E. & Khurshid, Faisal, 2024. "A novel parallel series data-driven model for IATA-coded flight delays prediction and features analysis," Journal of Air Transport Management, Elsevier, vol. 114(C).
    3. Liu, Wenjing & Delahaye, Daniel & Cetek, Fulya Aybek & Zhao, Qiuhong & Notry, Philippe, 2024. "Comparison of performance between PMS and trombone arrival route topologies in terminal maneuvering area," Journal of Air Transport Management, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    2. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    3. Yanchao Liu, 2019. "A Progressive Motion-Planning Algorithm and Traffic Flow Analysis for High-Density 2D Traffic," Transportation Science, INFORMS, vol. 53(6), pages 1501-1525, November.
    4. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    5. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    6. Ghoneim, Ayman & Abbass, Hussein A., 2016. "A multiobjective distance separation methodology to determine sector-level minimum separation for safe air traffic scenarios," European Journal of Operational Research, Elsevier, vol. 253(1), pages 226-240.
    7. Xiao, Mingming & Cai, Kaiquan & Abbass, Hussein A., 2018. "Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: A case study on China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 35-55.
    8. Bongo, Miriam F. & Ocampo, Lanndon A., 2017. "A hybrid fuzzy MCDM approach for mitigating airport congestion: A case in Ninoy Aquino International Airport," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 1-16.
    9. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Rigonat, Desirée, 2017. "Reducing ATFM delays through strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 42-59.
    10. Ye, Qing Chuan & Zhang, Yingqian & Dekker, Rommert, 2017. "Fair task allocation in transportation," Omega, Elsevier, vol. 68(C), pages 1-16.
    11. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part I: Deterministic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 156-166.
    12. Zhe Liang & Wanpracha Art Chaovalitwongse & Elsayed A. Elsayed, 2014. "Sequence Assignment Model for the Flight Conflict Resolution Problem," Transportation Science, INFORMS, vol. 48(3), pages 334-350, August.
    13. M. Selim Aktürk & Alper Atamtürk & Sinan Gürel, 2014. "Aircraft Rescheduling with Cruise Speed Control," Operations Research, INFORMS, vol. 62(4), pages 829-845, August.
    14. Silvia Zaoli & Giovanni Scaini & Lorenzo Castelli, 2021. "Community Detection for Air Traffic Networks and Its Application in Strategic Flight Planning," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    15. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).
    16. Sun, Yanshuo & Schonfeld, Paul, 2016. "Holding decisions for correlated vehicle arrivals at intermodal freight transfer terminals," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 218-240.
    17. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Scaini, Giovanni, 2021. "Flexibility in strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    18. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    19. Pellegrini, Paola & Bolić, Tatjana & Castelli, Lorenzo & Pesenti, Raffaele, 2017. "SOSTA: An effective model for the Simultaneous Optimisation of airport SloT Allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 34-53.
    20. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:103:y:2022:i:c:s0969699722000709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.