IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v23y2007i3p365-376.html
   My bibliography  Save this article

Structured analogies for forecasting

Author

Listed:
  • Green, Kesten C.
  • Armstrong, J. Scott

Abstract

When people forecast, they often use analogies but in an unstructured manner. We propose a structured judgmental procedure that involves asking experts to list as many analogies as they can, rate how similar the analogies are to the target situation, and match the outcomes of the analogies with possible outcomes of the target. An administrator would then derive a forecast from the experts' information. We compared structured analogies with unaided judgments for predicting the decisions made in eight conflict situations. These were difficult forecasting problems; the 32% accuracy of the unaided experts was only slightly better than chance. In contrast, 46% of structured analogies forecasts were accurate. Among experts who were independently able to think of two or more analogies and who had direct experience with their closest analogy, 60% of forecasts were accurate. Collaboration did not improve accuracy.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Green, Kesten C. & Armstrong, J. Scott, 2007. "Structured analogies for forecasting," International Journal of Forecasting, Elsevier, vol. 23(3), pages 365-376.
  • Handle: RePEc:eee:intfor:v:23:y:2007:i:3:p:365-376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(07)00069-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daniel Kahneman & Dan Lovallo, 1993. "Timid Choices and Bold Forecasts: A Cognitive Perspective on Risk Taking," Management Science, INFORMS, vol. 39(1), pages 17-31, January.
    2. Green, Kesten C., 2002. "Forecasting decisions in conflict situations: a comparison of game theory, role-playing, and unaided judgement," International Journal of Forecasting, Elsevier, vol. 18(3), pages 321-344.
    3. Kesten C. Green & J. Scott Armstrong, 2004. "Value of Expertise For Forecasting Decisions in Conflicts," Monash Econometrics and Business Statistics Working Papers 27/04, Monash University, Department of Econometrics and Business Statistics.
    4. Thomas R. Stewart & Thomas M. Leschine, 1986. "Judgment and Analysis in Oil Spill Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 6(3), pages 305-315, September.
    5. Robert Goldfarb & H. O. Stekler & Joel David, 2005. "Methodological issues in forecasting: Insights from the egregious business forecast errors of late 1930," Journal of Economic Methodology, Taylor & Francis Journals, vol. 12(4), pages 517-542.
    6. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Green, Kesten C., 2005. "Game theory, simulated interaction, and unaided judgement for forecasting decisions in conflicts: Further evidence," International Journal of Forecasting, Elsevier, vol. 21(3), pages 463-472.
    2. Green, Kesten C. & Armstrong, J. Scott, 2011. "Role thinking: Standing in other people's shoes to forecast decisions in conflicts," International Journal of Forecasting, Elsevier, vol. 27(1), pages 69-80, January.
    3. J. Scott Armstrong & Kesten C. Green, 2005. "Demand Forecasting: Evidence-based Methods," Monash Econometrics and Business Statistics Working Papers 24/05, Monash University, Department of Econometrics and Business Statistics.
    4. Kesten C. Green & J. Scott Armstrong, 2007. "The Ombudsman: Value of Expertise for Forecasting Decisions in Conflicts," Interfaces, INFORMS, vol. 37(3), pages 287-299, June.
    5. Edieal J. Pinker, 2007. "An Analysis of Short-Term Responses to Threats of Terrorism," Management Science, INFORMS, vol. 53(6), pages 865-880, June.
    6. Daniel Fonseca Costa & Francisval Carvalho & Bruno César Moreira & José Willer Prado, 2017. "Bibliometric analysis on the association between behavioral finance and decision making with cognitive biases such as overconfidence, anchoring effect and confirmation bias," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1775-1799, June.
    7. Luigi Guiso, 2015. "A Test of Narrow Framing and its Origin," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(1), pages 61-100, March.
    8. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    9. Michele Dell'Era & Luis Santos-Pinto, 2011. "Entrepreneurial Overconfidence, Self-Financing and Capital Market Efficiency," Cahiers de Recherches Economiques du Département d'économie 11.06, Université de Lausanne, Faculté des HEC, Département d’économie, revised Nov 2012.
    10. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    11. Meissner, Philip & Brands, Christian & Wulf, Torsten, 2017. "Quantifiying blind spots and weak signals in executive judgment: A structured integration of expert judgment into the scenario development process," International Journal of Forecasting, Elsevier, vol. 33(1), pages 244-253.
    12. Botond Kőszegi & Matthew Rabin, 2006. "A Model of Reference-Dependent Preferences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(4), pages 1133-1165.
    13. Johannes Abeler & Felix Marklein, 2017. "Fungibility, Labels, and Consumption," Journal of the European Economic Association, European Economic Association, vol. 15(1), pages 99-127.
    14. Erik Stam & Roy Thurik & Peter van der Zwan, 2010. "Entrepreneurial exit in real and imagined markets," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 1109-1139, August.
    15. T. K. Das & Bing-Sheng Teng, 1998. "Time and Entrepreneurial Risk Behavior," Entrepreneurship Theory and Practice, , vol. 22(2), pages 69-88, January.
    16. Kumar, Alok, 2007. "Do the diversification choices of individual investors influence stock returns?," Journal of Financial Markets, Elsevier, vol. 10(4), pages 362-390, November.
    17. Zellweger, Thomas & Sieger, Philipp & Halter, Frank, 2011. "Should I stay or should I go? Career choice intentions of students with family business background," Journal of Business Venturing, Elsevier, vol. 26(5), pages 521-536, September.
    18. Uri Gneezy & Jan Potters, 1997. "An Experiment on Risk Taking and Evaluation Periods," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 112(2), pages 631-645.
    19. Azzi, Sarah & Bird, Ron, 2005. "Prophets during boom and gloom downunder," Global Finance Journal, Elsevier, vol. 15(3), pages 337-367, February.
    20. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.

    More about this item

    JEL classification:

    • D74 - Microeconomics - - Analysis of Collective Decision-Making - - - Conflict; Conflict Resolution; Alliances; Revolutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:23:y:2007:i:3:p:365-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.