IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v22y2005i3p551-569.html
   My bibliography  Save this article

Modelling the hourly Spanish electricity demand

Author

Listed:
  • Martin-Rodriguez, Gloria
  • Caceres-Hernandez, Jose Juan

Abstract

No abstract is available for this item.

Suggested Citation

  • Martin-Rodriguez, Gloria & Caceres-Hernandez, Jose Juan, 2005. "Modelling the hourly Spanish electricity demand," Economic Modelling, Elsevier, vol. 22(3), pages 551-569, May.
  • Handle: RePEc:eee:ecmode:v:22:y:2005:i:3:p:551-569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264-9993(04)00066-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    3. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
    4. Hing Lin Chan & Shu Kam Lee, 1996. "Forecasting the Demand for Energy in China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-30.
    5. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    6. Ronald J. Sutherland, 1983. "Distributed Lags and the Demand for Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    7. Koli Fatai & Les Oxley & Frank G. Scrimgeour, 2003. "Modeling and Forecasting the Demand for Electricity in New Zealand: A Comparison of Alternative Approaches," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-102.
    8. Hsio, Cheng & Chan, M. W. Luke & Mountain, Dean C. & Tsui, Kai Y., 1987. "An integrated monthly and hourly regional electricity model for Ontario, Canada," Resources and Energy, Elsevier, vol. 9(3), pages 275-299, October.
    9. J W Taylor & S Majithia, 2000. "Using combined forecasts with changing weights for electricity demand profiling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 72-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narayan, Paresh Kumar & Popp, Stephan, 2012. "The energy consumption-real GDP nexus revisited: Empirical evidence from 93 countries," Economic Modelling, Elsevier, vol. 29(2), pages 303-308.
    2. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    3. Adom, Philip Kofi, 2016. "Electricity Supply and System losses in Ghana. What is the red line? Have we crossed over?," MPRA Paper 74559, University Library of Munich, Germany, revised 11 Nov 2016.
    4. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).
    5. Andersen, F.M. & Larsen, H.V. & Juul, N. & Gaardestrup, R.B., 2014. "Differentiated long term projections of the hourly electricity consumption in local areas. The case of Denmark West," Applied Energy, Elsevier, vol. 135(C), pages 523-538.
    6. Jose Juan Caceres-Hernandez & Gloria Martin-Rodriguez & Jonay Hernandez-Martin, 2022. "A proposal for measuring and comparing seasonal variations in hourly economic time series," Empirical Economics, Springer, vol. 62(4), pages 1995-2021, April.
    7. F. M. Andersen & H. V. Larsen & L. Kitzing & P. E. Morthorst, 2014. "Who gains from hourly time‐of‐use retail prices on electricity? An analysis of consumption profiles for categories of Danish electricity customers," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 582-593, November.
    8. Andersen, F.M. & Larsen, H.V. & Gaardestrup, R.B., 2013. "Long term forecasting of hourly electricity consumption in local areas in Denmark," Applied Energy, Elsevier, vol. 110(C), pages 147-162.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    2. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    3. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    4. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    5. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    6. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    7. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    8. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    9. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    10. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    11. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    12. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    13. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
    14. repec:qut:auncer:wp103 is not listed on IDEAS
    15. Elamin, Niematallah & Fukushige, Mototsugu, 2018. "Modeling and forecasting hourly electricity demand by SARIMAX with interactions," Energy, Elsevier, vol. 165(PB), pages 257-268.
    16. Pedregal, Diego J. & Young, Peter C., 2006. "Modulated cycles, an approach to modelling periodic components from rapidly sampled data," International Journal of Forecasting, Elsevier, vol. 22(1), pages 181-194.
    17. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    18. Pielow, Amy & Sioshansi, Ramteen & Roberts, Matthew C., 2012. "Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors," Energy, Elsevier, vol. 46(1), pages 533-540.
    19. Cancelo, José Ramón & Grafe, Rosmarie, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    21. John Foster & William Paul Bell & Craig Froome & Phil Wild & Liam Wagner & Deepak Sharma & Suwin Sandu & Suchi Misra & Ravindra Bagia, 2012. "Institutional adaptability to redress electricity infrastructure vulnerability due to climate change," Energy Economics and Management Group Working Papers 7-2012, School of Economics, University of Queensland, Australia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:22:y:2005:i:3:p:551-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.