IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v24y2008i4p616-629.html
   My bibliography  Save this article

Input space to neural network based load forecasters

Author

Listed:
  • Alves da Silva, Alexandre P.
  • Ferreira, Vitor H.
  • Velasquez, Roberto M.G.

Abstract

The literature has presented a great variety of methodologies for electricity load forecasting. This fact reflects the possible consequences of electricity load forecasting errors, which can cause blackouts with serious social and economic implications. In recent years, papers on this topic have shown the potential of neural network based models. For short term horizons in particular, this capability is explained by the neural networks' flexibility in capturing nonlinear interdependencies between the load and exogenous variables. However, one issue in the development of neural network based electricity load forecasts has not been treated with proper care. Input space representation and complexity control interact strongly, and new solutions for this problem are needed. This paper proposes original automatic procedures for selecting input variables in feedforward neural network based load forecasting models. Filter (model independent) and wrapper (model dependent) approaches have both been investigated in the context of short term load forecasting. Regarding the filter approach, a procedure for identifying relevant subspaces is introduced. For each relevant subspace, interdependences based on a normalized measure of mutual information are estimated to select input variables. Furthermore, phase-space embedding, based on Takens' theorem, is applied in combination with multi-resolution decomposition via wavelet transformation. The results have been compared with a Bayesian wrapper, in which probes have been employed as input references of usefulness.

Suggested Citation

  • Alves da Silva, Alexandre P. & Ferreira, Vitor H. & Velasquez, Roberto M.G., 2008. "Input space to neural network based load forecasters," International Journal of Forecasting, Elsevier, vol. 24(4), pages 616-629.
  • Handle: RePEc:eee:intfor:v:24:y:2008:i:4:p:616-629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00072-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    2. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jungwon Yu & June Ho Park & Sungshin Kim, 2018. "A New Input Selection Algorithm Using the Group Method of Data Handling and Bootstrap Method for Support Vector Regression Based Hourly Load Forecasting," Energies, MDPI, vol. 11(11), pages 1-20, October.
    2. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    3. Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
    4. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    5. Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
    6. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    7. Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
    8. Rubio, Ginés & Pomares, Héctor & Rojas, Ignacio & Herrera, Luis Javier, 2011. "A heuristic method for parameter selection in LS-SVM: Application to time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 725-739, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    2. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    3. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    4. repec:qut:auncer:wp103 is not listed on IDEAS
    5. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    6. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2019. "Classification of Special Days in Short-Term Load Forecasting: The Spanish Case Study," Energies, MDPI, vol. 12(7), pages 1-31, April.
    7. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    8. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    9. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    10. Do, Linh Phuong Catherine & Lin, Kuan-Heng & Molnár, Peter, 2016. "Electricity consumption modelling: A case of Germany," Economic Modelling, Elsevier, vol. 55(C), pages 92-101.
    11. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    12. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    13. Webel, Karsten & Smyk, Anna, 2023. "Towards seasonal adjustment of infra-monthly time series with JDemetra+," Discussion Papers 24/2023, Deutsche Bundesbank.
    14. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    15. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    16. Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
    17. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    18. Nuno Ornelas Martins & Ricardo Morais, 2015. "The influence of critical realism on managerial prediction," Working Papers de Gestão (Management Working Papers) 02, Católica Porto Business School, Universidade Católica Portuguesa.
    19. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
    20. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    21. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:24:y:2008:i:4:p:616-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.