IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v51y2000i1d10.1057_palgrave.jors.2600856.html
   My bibliography  Save this article

Using combined forecasts with changing weights for electricity demand profiling

Author

Listed:
  • J W Taylor

    (London Business School)

  • S Majithia

    (National Grid Company)

Abstract

Day-ahead half-hourly demand forecasts are required for scheduling and for calculating the daily electricity pool price. One approach predicts turning points on the demand curve and then produces half-hourly forecasts by a heuristic procedure, called profiling, which is based on a past demand curve. This paper investigates possible profiling improvements. Using a cubic smoothing spline in the heuristic leads to a slight improvement. Often, several past curves could reasonably be used in the profiling method. Consequently, there are often several demand curve forecasts available. Switching and smooth transition forecast combination models are considered. These models enable the combining weights to vary across the 48 half-hours, which is appealing as different forecasts may be more suitable for different periods. Several criteria are used to control the changing weights, including weather, and the methodology is extended to the case of more than two forecasts. Empirical analysis gives encouraging results.

Suggested Citation

  • J W Taylor & S Majithia, 2000. "Using combined forecasts with changing weights for electricity demand profiling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 72-82, January.
  • Handle: RePEc:pal:jorsoc:v:51:y:2000:i:1:d:10.1057_palgrave.jors.2600856
    DOI: 10.1057/palgrave.jors.2600856
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2600856
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2600856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    2. D J Pedregal & P C Young, 2008. "Development of improved adaptive approaches to electricity demand forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1066-1076, August.
    3. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    4. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    5. Zhang Yue & Arash Farnoosh, 2018. "Analysing the Dynamic Impact of Electricity Futures on Revenue and Risks of Renewable Energy in China," Working Papers hal-03188814, HAL.
    6. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Lorena Calavia & Belén Carro & Antonio Sánchez-Esguevillas & Pablo García & Jaime Lloret, 2013. "Experimental Analysis of the Input Variables’ Relevance to Forecast Next Day’s Aggregated Electric Demand Using Neural Networks," Energies, MDPI, vol. 6(6), pages 1-22, June.
    7. Dyner, Isaac & Larsen, Erik R., 2001. "From planning to strategy in the electricity industry," Energy Policy, Elsevier, vol. 29(13), pages 1145-1154, November.
    8. Martin-Rodriguez, Gloria & Caceres-Hernandez, Jose Juan, 2005. "Modelling the hourly Spanish electricity demand," Economic Modelling, Elsevier, vol. 22(3), pages 551-569, May.
    9. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
    10. Avci, Ezgi & Ketter, Wolfgang & van Heck, Eric, 2018. "Managing electricity price modeling risk via ensemble forecasting: The case of Turkey," Energy Policy, Elsevier, vol. 123(C), pages 390-403.
    11. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    12. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    13. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    14. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    15. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    16. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    17. Martina Assereto & Julie Byrne, 2020. "The Implications of Policy Uncertainty on Solar Photovoltaic Investment," Energies, MDPI, vol. 13(23), pages 1-20, November.
    18. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:51:y:2000:i:1:d:10.1057_palgrave.jors.2600856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.