Forecasting with genetically programmed polynomial neural networks
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
- Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
- Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- M. A. Kaboudan, 2000. "Genetic Programming Prediction of Stock Prices," Computational Economics, Springer;Society for Computational Economics, vol. 16(3), pages 207-236, December.
- Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
- Hippert, H.S. & Bunn, D.W. & Souza, R.C., 2005. "Large neural networks for electricity load forecasting: Are they overfitted?," International Journal of Forecasting, Elsevier, vol. 21(3), pages 425-434.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel Vela, 2013. "Forecasting Latin-American yield curves: An artificial neural network approach," Borradores de Economia 761, Banco de la Republica de Colombia.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011.
"Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660, July.
- Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
- Teddy, S.D. & Ng, S.K., 2011. "Forecasting ATM cash demands using a local learning model of cerebellar associative memory network," International Journal of Forecasting, Elsevier, vol. 27(3), pages 760-776, July.
- Daniel Vela, 2013. "Forecasting Latin-American yield curves: An artificial neural network approach," Borradores de Economia 10502, Banco de la Republica.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
- Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
- Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
- repec:qut:auncer:wp103 is not listed on IDEAS
- Liu, Xiaojia & An, Haizhong & Wang, Lijun & Jia, Xiaoliang, 2017. "An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms," Applied Energy, Elsevier, vol. 185(P2), pages 1778-1787.
- Manahov, Viktor & Hudson, Robert & Hoque, Hafiz, 2015. "Return predictability and the ‘wisdom of crowds’: Genetic Programming trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 85-98.
- Marcos Álvarez-Díaz & Lucy Amigo Dobaño, 2003. "Métodos No-Lineales De Predicción En El Mercado De Valores Tecnológicos En España. Una Verificación De La Hipótesis Débil De Eficiencia," Working Papers 0303, Universidade de Vigo, Departamento de Economía Aplicada.
- Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
- Clements, A.E. & Hurn, A.S. & Li, Z., 2016.
"Forecasting day-ahead electricity load using a multiple equation time series approach,"
European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
- Adam Clements & Stan Hurn & Zili Li, 2014. "Forecasting day-ahead electricity load using a multiple equation time series approach," NCER Working Paper Series 103, National Centre for Econometric Research, revised 06 May 2015.
- Martin Madera & Dusan Marcek, 2023. "Intelligence in Finance and Economics for Predicting High-Frequency Data," Mathematics, MDPI, vol. 11(2), pages 1-15, January.
- Cancelo, José Ramón & Grafe, Rosmarie, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
- Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
- Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
- Powell, Kody M. & Sriprasad, Akshay & Cole, Wesley J. & Edgar, Thomas F., 2014. "Heating, cooling, and electrical load forecasting for a large-scale district energy system," Energy, Elsevier, vol. 74(C), pages 877-885.
- Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
- Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
- Bessec, Marie & Fouquau, Julien, 2018.
"Short-run electricity load forecasting with combinations of stationary wavelet transforms,"
European Journal of Operational Research, Elsevier, vol. 264(1), pages 149-164.
- Marie Bessec & Julien Fouquau, 2018. "Short-run electricity load forecasting with combinations of stationary wavelet transforms," Post-Print hal-01644930, HAL.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:22:y:2006:i:2:p:249-265. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.