IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v43y2016icp44-57.html
   My bibliography  Save this article

The evolving dynamics of the Australian SPI 200 implied volatility surface

Author

Listed:
  • Tanha, Hassan
  • Dempsey, Michael

Abstract

This paper is concerned with the evolutionary behaviour of implied volatility patterns, which identifies vega uncertainty. Using a principal component analysis (PCA), we compare reported results in US and European markets with our findings here for Australian markets. In this way, we seek to establish the degree to which prior findings have “universality” as opposed to being strictly the outcome of a particular market at a particular time. In a broad sense, we are able to reproduce prior findings. But there are differences. Prior studies find that prevailing shocks impact primarily uniformly across options independently of moneyness (a “parallel shift”) with a second effect (a “Z-shaped twist”) that impacts differentially in relation to the option's degree of moneyness. We find that the “parallel shift” can be interpreted as applying primarily to in-the-money (ITM) options and the Z-shaped twist to out-of-the-money (OTM) options. As a result, the overall effects are interpreted in relation to a volatility smile.

Suggested Citation

  • Tanha, Hassan & Dempsey, Michael, 2016. "The evolving dynamics of the Australian SPI 200 implied volatility surface," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 44-57.
  • Handle: RePEc:eee:intfin:v:43:y:2016:i:c:p:44-57
    DOI: 10.1016/j.intfin.2016.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443116300178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2016.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    3. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    4. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    5. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    6. Carr, Peter & Wu, Liuren, 2016. "Analyzing volatility risk and risk premium in option contracts: A new theory," Journal of Financial Economics, Elsevier, vol. 120(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    2. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    3. Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.
    4. Michel van der Wel & Sait R. Ozturk & Dick van Dijk, 2015. "Dynamic Factor Models for the Volatility Surface," CREATES Research Papers 2015-13, Department of Economics and Business Economics, Aarhus University.
    5. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    6. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.
    7. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    8. Chen, Ying & Grith, Maria & Lai, Hannah L. H., 2023. "Neural Tangent Kernel in Implied Volatility Forecasting: A Nonlinear Functional Autoregression Approach," MPRA Paper 119022, University Library of Munich, Germany.
    9. Shi, Yukun & Stasinakis, Charalampos & Xu, Yaofei & Yan, Cheng, 2022. "Market co-movement between credit default swap curves and option volatility surfaces," International Review of Financial Analysis, Elsevier, vol. 82(C).
    10. Da Fonseca, José & Gottschalk, Katrin, 2014. "Cross-hedging strategies between CDS spreads and option volatility during crises," Journal of International Money and Finance, Elsevier, vol. 49(PB), pages 386-400.
    11. Martin Magris & Perttu Barholm & Juho Kanniainen, 2017. "Implied volatility smile dynamics in the presence of jumps," Papers 1711.02925, arXiv.org, revised May 2020.
    12. Beer, Simone & Braun, Alexander, 2022. "Market-consistent valuation of natural catastrophe risk," Journal of Banking & Finance, Elsevier, vol. 134(C).
    13. Borak, Szymon & Fengler, Matthias R. & Härdle, Wolfgang Karl, 2005. "DSFM fitting of implied volatility surfaces," SFB 649 Discussion Papers 2005-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Chen, Si & Zhou, Zhen & Li, Shenghong, 2016. "An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach," Economic Modelling, Elsevier, vol. 58(C), pages 655-664.
    15. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    16. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    17. Shi, Yunkun & Stasinakis, Charalampos & Xu, Yaofei & Yan, Cheng & Zhang, Xuan, 2022. "Stock price default boundary: A Black-Cox model approach," International Review of Financial Analysis, Elsevier, vol. 83(C).
    18. Wallmeier, Martin, 2012. "Smile in Motion: An Intraday Analysis of Asymmetric Implied Volatility," FSES Working Papers 427, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    19. Fengler, Matthias R. & Wang, Qihua, 2003. "Fitting the Smile Revisited: A Least Squares Kernel Estimator for the Implied Volatility Surface," SFB 373 Discussion Papers 2003,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    20. Chantziara, Thalia & Skiadopoulos, George, 2008. "Can the dynamics of the term structure of petroleum futures be forecasted? Evidence from major markets," Energy Economics, Elsevier, vol. 30(3), pages 962-985, May.
    21. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.

    More about this item

    Keywords

    Implied volatility; VIX; Volatility forecasts; Informational efficiency;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:43:y:2016:i:c:p:44-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.