IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/119022.html
   My bibliography  Save this paper

Neural Tangent Kernel in Implied Volatility Forecasting: A Nonlinear Functional Autoregression Approach

Author

Listed:
  • Chen, Ying
  • Grith, Maria
  • Lai, Hannah L. H.

Abstract

Implied volatility (IV) forecasting is inherently challenging due to its high dimensionality across various moneyness and maturity, and nonlinearity in both spatial and temporal aspects. We utilize implied volatility surfaces (IVS) to represent comprehensive spatial dependence and model the nonlinear temporal dependencies within a series of IVS. Leveraging advanced kernel-based machine learning techniques, we introduce the functional Neural Tangent Kernel (fNTK) estimator within the Nonlinear Functional Autoregression framework, specifically tailored to capture intricate relationships within implied volatilities. We establish the connection between fNTK and kernel regression, emphasizing its role in contemporary nonparametric statistical modeling. Empirically, we analyze S&P 500 Index options from January 2009 to December 2021, encompassing more than 6 million European calls and puts, thereby showcasing the superior forecast accuracy of fNTK.We demonstrate the significant economic value of having an accurate implied volatility forecaster within trading strategies. Notably, short delta-neutral straddle trading, supported by fNTK, achieves a Sharpe ratio ranging from 1.45 to 2.02, resulting in a relative enhancement in trading outcomes ranging from 77% to 583%.

Suggested Citation

  • Chen, Ying & Grith, Maria & Lai, Hannah L. H., 2023. "Neural Tangent Kernel in Implied Volatility Forecasting: A Nonlinear Functional Autoregression Approach," MPRA Paper 119022, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:119022
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/119022/1/MPRA_paper_119022.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    3. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    4. Joshua D. Coval & Tyler Shumway, 2001. "Expected Option Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 983-1009, June.
    5. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    6. Büchner, Matthias & Kelly, Bryan, 2022. "A factor model for option returns," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1140-1161.
    7. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2017. "Short-Term Market Risks Implied by Weekly Options," Journal of Finance, American Finance Association, vol. 72(3), pages 1335-1386, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    2. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    3. Alejandro Bernales & Thanos Verousis & Nikolaos Voukelatos & Mengyu Zhang, 2020. "What do we know about individual equity options?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(1), pages 67-91, January.
    4. Tanha, Hassan & Dempsey, Michael, 2016. "The evolving dynamics of the Australian SPI 200 implied volatility surface," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 44-57.
    5. Amit Goyal & Alessio Saretto, 2022. "Are Equity Option Returns Abnormal? IPCA Says No," Working Papers 2214, Federal Reserve Bank of Dallas.
    6. Chen, Ding & Guo, Biao & Zhou, Guofu, 2023. "Firm fundamentals and the cross-section of implied volatility shapes," Journal of Financial Markets, Elsevier, vol. 63(C).
    7. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    8. Alfredo Ibáñez, 2008. "The cross-section of average delta-hedge option returns under stochastic volatility," Review of Derivatives Research, Springer, vol. 11(3), pages 205-244, October.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    11. Panzica, Roberto Calogero, 2018. "Idiosyncratic volatility puzzle: The role of assets' interconnections," SAFE Working Paper Series 228, Leibniz Institute for Financial Research SAFE.
    12. Bernales, Alejandro & Verousis, Thanos & Voukelatos, Nikolaos, 2020. "Do investors follow the herd in option markets?," Journal of Banking & Finance, Elsevier, vol. 119(C).
    13. Neumann, Maximilian & Prokopczuk, Marcel & Wese Simen, Chardin, 2016. "Jump and variance risk premia in the S&P 500," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 72-83.
    14. Koulakiotis, Athanasios & Kartalis, Nikos & Lyroudi, Katerina & Papasyriopoulos, Nicholas, 2013. "The impact of corporate governance, regulatory differences and futures contracts on movements among portfolios of cross-listed equities: The case of Germany," Journal of Multinational Financial Management, Elsevier, vol. 23(1), pages 34-53.
    15. Qian Han & Calum G. Turvey, 2013. "A Robust Equilibrium Relationship between Market Prices of Risks and Risk Aversion in Dynamically Complete Stochastic," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    16. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    17. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    18. Cremers, Martijn & Driessen, Joost & Maenhout, Pascal & Weinbaum, David, 2008. "Individual stock-option prices and credit spreads," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2706-2715, December.
    19. Bjørn Eraker, 2013. "The performance of model based option trading strategies," Review of Derivatives Research, Springer, vol. 16(1), pages 1-23, April.
    20. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.

    More about this item

    Keywords

    Implied Volatility Surfaces; Neural Networks; Neural Tangent Kernel; Implied Volatility Forecasting; Nonlinear Functional Autoregression; Option Trading Strategies;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:119022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.