IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v58y2016icp655-664.html
   My bibliography  Save this article

An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach

Author

Listed:
  • Chen, Si
  • Zhou, Zhen
  • Li, Shenghong

Abstract

As suggested by numerous studies, while the implied volatility surface changes over time, its shape tends to pervade. This motivates us to construct a dynamic model for implied volatility surface, which not only captures cross-sectional information of implied volatilities with different strikes and maturities, but also describes how the implied volatility surface evolves over time. In this paper, we use nonlinear parametric function to capture single implied volatility surface, and model the dynamics of implied volatility surface by modeling the dynamics of function coefficients. We introduce unscented Kalman filter to propagate the nonlinear system, which is constructed by the nonlinear parametric function and the dynamics of its coefficients. A dynamic approach is proposed to provide optimal estimation of model parameters and efficient forecast of future implied volatility surface. It shows that our model has a better description of implied volatility surface dynamics than other similar models, and can be used to do volatility surface forecast.

Suggested Citation

  • Chen, Si & Zhou, Zhen & Li, Shenghong, 2016. "An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach," Economic Modelling, Elsevier, vol. 58(C), pages 655-664.
  • Handle: RePEc:eee:ecmode:v:58:y:2016:i:c:p:655-664
    DOI: 10.1016/j.econmod.2016.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999316301663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2016.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li-Hua & Zhang, Wei-Guo & Xu, Wei-Jun & Xiao, Wei-Lin, 2012. "The double exponential jump diffusion model for pricing European options under fuzzy environments," Economic Modelling, Elsevier, vol. 29(3), pages 780-786.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    4. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    5. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    6. Li, Junye, 2013. "An unscented Kalman smoother for volatility extraction: Evidence from stock prices and options," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 15-26.
    7. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Bakshi, Gurdip & Carr, Peter & Wu, Liuren, 2008. "Stochastic risk premiums, stochastic skewness in currency options, and stochastic discount factors in international economies," Journal of Financial Economics, Elsevier, vol. 87(1), pages 132-156, January.
    10. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    11. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    12. George Skiadopoulos & Stewart Hodges & Les Clewlow, 2000. "The Dynamics of the S&P 500 Implied Volatility Surface," Review of Derivatives Research, Springer, vol. 3(3), pages 263-282, October.
    13. Bedendo, Mascia & Hodges, Stewart D., 2009. "The dynamics of the volatility skew: A Kalman filter approach," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1156-1165, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tissaoui, Kais, 2019. "Forecasting implied volatility risk indexes: International evidence using Hammerstein-ARX approach," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 232-249.
    2. Tissaoui, Kais & Zaghdoudi, Taha, 2021. "Dynamic connectedness between the U.S. financial market and Euro-Asian financial markets: Testing transmission of uncertainty through spatial regressions models," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 481-492.
    3. Pattnaik, Debidutta & Kumar, Satish & Burton, Bruce & Lim, Weng Marc, 2022. "Economic Modelling at thirty-five: A retrospective bibliometric survey," Economic Modelling, Elsevier, vol. 107(C).
    4. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    5. Ulze, Markus & Stadler, Johannes & Rathgeber, Andreas W., 2021. "No country for old distributions? On the comparison of implied option parameters between the Brownian motion and variance gamma process," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 163-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    2. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    5. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    6. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    7. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    8. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    9. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    10. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    11. Mozumder, Sharif & Dempsey, Michael & Kabir, M. Humayun & Choudhry, Taufiq, 2016. "An improved framework for approximating option prices with application to option portfolio hedging," Economic Modelling, Elsevier, vol. 59(C), pages 285-296.
    12. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    13. Wu, Bin & Chen, Pengzhan & Ye, Wuyi, 2024. "Variance swaps with mean reversion and multi-factor variance," European Journal of Operational Research, Elsevier, vol. 315(1), pages 191-212.
    14. Sharif Mozumder & Bakhtear Talukdar & M. Humayun Kabir & Bingxin Li, 2024. "Non-linear volatility with normal inverse Gaussian innovations: ad-hoc analytic option pricing," Review of Quantitative Finance and Accounting, Springer, vol. 62(1), pages 97-133, January.
    15. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    16. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    17. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    18. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    19. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    20. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    21. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:58:y:2016:i:c:p:655-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.