IDEAS home Printed from https://ideas.repec.org/a/eee/inteco/v165y2021icp140-153.html
   My bibliography  Save this article

The energy transition, Trump energy agenda and COVID-19

Author

Listed:
  • Selmi, Refk
  • Bouoiyour, Jamal
  • Hammoudeh, Shawkat
  • Errami, Youssef
  • Wohar, Mark E.

Abstract

Market participants and public policy makers around the world are working hard, attempting to move the world away from the use of carbon-intensive fossil fuels and towards the adoption of viable renewable energy sources. The Trump energy plan supports the production of fossil fuels by reversing this progress. The COVID-19 and the resulting lockdown measures come to worsen the situation by causing a noticeable disruption across the fossil fuel and renewable energy industries. Given these developments, this study seeks to address how and to what extent the Trump energy agenda is rolling back the plans for advancing renewable energy, and how the pandemic is changing the pace of energy transition. For this purpose, we compare the performances of renewable energy and fossil fuels in terms of volatility, efficiency and diversifications benefits for three different periods with varying-uncertainty levels, namely the pre- and the post- Trump’s inauguration periods and the period of rising anxiety over COVID-19. Our results reveal that in the period after the Trump inauguration, coal and oil (renewable energy) have become less (more) volatile but are relatively more (less) responsive to good news. The conditions however became worse with the onslaught of the coronavirus pandemic. COVID-19 adversely affects investment in oil, coal and renewable energy stock markets, though with varying levels. This virus persists to strongly hit fossil fuels demand because of the stringent containment measures. It also poses a huge threat to the timely deployment of renewables and their contributions to the renewable energy progress. These findings have relevant implications for risk management and policy designs.

Suggested Citation

  • Selmi, Refk & Bouoiyour, Jamal & Hammoudeh, Shawkat & Errami, Youssef & Wohar, Mark E., 2021. "The energy transition, Trump energy agenda and COVID-19," International Economics, Elsevier, vol. 165(C), pages 140-153.
  • Handle: RePEc:eee:inteco:v:165:y:2021:i:c:p:140-153
    DOI: 10.1016/j.inteco.2020.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S211070172030295X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.inteco.2020.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Refk Selmi & Jamal Bouoiyour, 2020. "The financial costs of political uncertainty: Evidence from the 2016 US presidential elections," Scottish Journal of Political Economy, Scottish Economic Society, vol. 67(2), pages 166-185, May.
    4. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Balcilar, Mehmet & Gupta, Rangan & Pierdzioch, Christian, 2016. "Does uncertainty move the gold price? New evidence from a nonparametric causality-in-quantiles test," Resources Policy, Elsevier, vol. 49(C), pages 74-80.
    7. Kollias, Christos & Kyrtsou, Catherine & Papadamou, Stephanos, 2013. "The effects of terrorism and war on the oil price–stock index relationship," Energy Economics, Elsevier, vol. 40(C), pages 743-752.
    8. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    9. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    10. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    11. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    12. Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selmi, Refk & Makhlouf, Farid & Kasmaoui, Kamal & Errami, Youssef & Ben Atta, Oussama, 2022. "“There is No vaccine for climate change” - How well Governments’COVID-19 green stimulus announcements contribute to business sustainability?," International Economics, Elsevier, vol. 171(C), pages 1-17.
    2. Daniel Stefan Armeanu & Stefan Cristian Gherghina & Jean Vasile Andrei & Camelia Catalina Joldes, 2023. "Evidence from the nonlinear autoregressive distributed lag model on the asymmetric influence of the first wave of the COVID-19 pandemic on energy markets," Energy & Environment, , vol. 34(5), pages 1433-1470, August.
    3. Ullah, Atta & Ullah, Saif & Pinglu, Chen & Khan, Saba, 2023. "Impact of FinTech, governance and environmental taxes on energy transition: Pre-post COVID-19 analysis of belt and road initiative countries," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    2. Samih Antoine Azar & Angelic Salha, 2017. "The Bias in the Long Run Relation between the Prices of BRENT and West Texas Intermediate Crude Oils," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 44-54.
    3. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    4. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    5. Caporale, Guglielmo Maria & Kontonikas, Alexandros, 2009. "The Euro and inflation uncertainty in the European Monetary Union," Journal of International Money and Finance, Elsevier, vol. 28(6), pages 954-971, October.
    6. Mushtaq Hussain Khan & Junaid Ahmed & Mazhar Mughal & Imtiaz Hussain Khan, 2023. "Oil price volatility and stock returns: Evidence from three oil‐price wars," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3162-3182, July.
    7. Pal, Debdatta, 2022. "Does hospitality industry stock volatility react asymmetrically to health and economic crises?," Economic Modelling, Elsevier, vol. 108(C).
    8. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.
    9. Henryk Gurgul & Robert Syrek, 2023. "Contagion between selected European indexes during the Covid-19 pandemic," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(1), pages 47-59.
    10. Wang, Xinya & Liu, Huifang & Huang, Shupei, 2019. "Identification of the daily seasonality in gold returns and volatilities: Evidence from Shanghai and London," Resources Policy, Elsevier, vol. 61(C), pages 522-531.
    11. Mohamed Boutahar & Jamel Jouini, 2007. "A Methodology For Detecting Breaks In The Mean And Covariance Structure Of Time Series," Working Papers halshs-00354249, HAL.
    12. da Silva, Carlos Alberto & Ferreira, Leo da, 2015. "Asymmetric Volatility Modeling of Spot Prices of Arabic Coffee in Brazil," 2015 Conference, August 9-14, 2015, Milan, Italy 211556, International Association of Agricultural Economists.
    13. Subrata Roy, 2020. "Stock Market Asymmetry and Investors’ Sensation on Prime Minister: Indian Evidence," Jindal Journal of Business Research, , vol. 9(2), pages 148-161, December.
    14. Lan-Fen Chu & Michael McAleer & Chi-Chung Chen, 2012. "How Volatile is ENSO for Global Greenhouse Gas Emissions and the Global Economy?," Journal of Reviews on Global Economics, Lifescience Global, vol. 1, pages 1-12.
    15. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    16. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    17. Chu, L. & McAleer, M.J. & Chen, C-C., 2009. "How Volatile is ENSO?," Econometric Institute Research Papers EI 2009-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    19. Go Tamakoshi & Shigeyuki Hamori, 2014. "Causality-in-variance and causality-in-mean between the Greek sovereign bond yields and Southern European banking sector equity returns," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(4), pages 627-642, October.
    20. Gustavo Freire & Marcelo Resende, 2020. "Conditional growth volatility and sectoral comovement in U.S. industrial production, 1828–1915," Empirical Economics, Springer, vol. 59(6), pages 3063-3084, December.

    More about this item

    Keywords

    COVID-19; Trump energy agenda; Fossil fuels; Renewable energies;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:inteco:v:165:y:2021:i:c:p:140-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/21107017 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.