IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v50y2012i3p423-429.html
   My bibliography  Save this article

On allocation of upper limits and deductibles with dependent frequencies and comonotonic severities

Author

Listed:
  • Li, Xiaohu
  • You, Yinping

Abstract

With the assumption of Archimedean copula for the occurrence frequencies of the risks covered by an insurance policy, this note further investigates the allocation problem of upper limits and deductibles addressed in Hua and Cheung (2008a). Sufficient conditions for a risk averse policyholder to well allocate the upper limits and the deductibles are built, respectively.

Suggested Citation

  • Li, Xiaohu & You, Yinping, 2012. "On allocation of upper limits and deductibles with dependent frequencies and comonotonic severities," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 423-429.
  • Handle: RePEc:eee:insuma:v:50:y:2012:i:3:p:423-429
    DOI: 10.1016/j.insmatheco.2012.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712000248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2012.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Lei & Cheung, Ka Chun, 2008. "Stochastic orders of scalar products with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 865-872, June.
    2. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    3. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    4. Zhuang, Weiwei & Chen, Zijin & Hu, Taizhong, 2009. "Optimal allocation of policy limits and deductibles under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 409-414, June.
    5. Lu, ZhiYi & Meng, LiLi, 2011. "Stochastic comparisons for allocations of policy limits and deductibles with applications," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 338-343, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Jun & Wei, Wei, 2014. "Some new notions of dependence with applications in optimal allocation problems," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 200-209.
    2. Wei Wei, 2018. "Properties of Stochastic Arrangement Increasing and Their Applications in Allocation Problems," Risks, MDPI, vol. 6(2), pages 1-12, April.
    3. Yinping You & Xiaohu Li, 2017. "Most unfavorable deductibles and coverage limits for multiple random risks with Archimedean copulas," Annals of Operations Research, Springer, vol. 259(1), pages 485-501, December.
    4. Yinping You & Xiaohu Li & Narayanaswamy Balakrishnan, 2014. "On extremes of bivariate residual lifetimes from generalized Marshall–Olkin and time transformed exponential models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1041-1056, November.
    5. Li, Chen & Li, Xiaohu, 2017. "Ordering optimal deductible allocations for stochastic arrangement increasing risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 31-40.
    6. Zhang, Yiying & Zhao, Peng, 2015. "Comparisons on aggregate risks from two sets of heterogeneous portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 124-135.
    7. Pan Xiaoqing & Li Xiaohu, 2017. "On capital allocation for stochastic arrangement increasing actuarial risks," Dependence Modeling, De Gruyter, vol. 5(1), pages 145-153, January.
    8. Yinping You & Xiaohu Li & Rui Fang, 2021. "On coverage limits and deductibles for SAI loss severities," Annals of Operations Research, Springer, vol. 297(1), pages 341-357, February.
    9. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinping You & Xiaohu Li, 2017. "Most unfavorable deductibles and coverage limits for multiple random risks with Archimedean copulas," Annals of Operations Research, Springer, vol. 259(1), pages 485-501, December.
    2. Yinping You & Xiaohu Li & Rui Fang, 2021. "On coverage limits and deductibles for SAI loss severities," Annals of Operations Research, Springer, vol. 297(1), pages 341-357, February.
    3. Manesh, Sirous Fathi & Khaledi, Baha-Eldin, 2015. "Allocations of policy limits and ordering relations for aggregate remaining claims," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 9-14.
    4. Manesh, Sirous Fathi & Khaledi, Baha-Eldin & Dhaene, Jan, 2016. "Optimal allocation of policy deductibles for exchangeable risks," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 87-92.
    5. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    6. Maria Mercè Claramunt & Maite Màrmol, 2020. "Refundable deductible insurance," Working Papers hal-02909299, HAL.
    7. Cai, Jun & Wei, Wei, 2014. "Some new notions of dependence with applications in optimal allocation problems," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 200-209.
    8. Hobson, David & Laurence, Peter & Wang, Tai-Ho, 2005. "Static-arbitrage optimal subreplicating strategies for basket options," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 553-572, December.
    9. Cheung, Ka Chun, 2009. "Applications of conditional comonotonicity to some optimization problems," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 89-93, August.
    10. Li, Chen & Li, Xiaohu, 2017. "Ordering optimal deductible allocations for stochastic arrangement increasing risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 31-40.
    11. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
    12. Qi Feng & J. George Shanthikumar, 2018. "Arrangement Increasing Resource Allocation," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 935-955, September.
    13. Lu, ZhiYi & Meng, LiLi, 2011. "Stochastic comparisons for allocations of policy limits and deductibles with applications," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 338-343, May.
    14. Cheung, Ka Chun, 2006. "Optimal portfolio problem with unknown dependency structure," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 167-175, February.
    15. Wei Wei, 2018. "Properties of Stochastic Arrangement Increasing and Their Applications in Allocation Problems," Risks, MDPI, vol. 6(2), pages 1-12, April.
    16. Xu, Maochao & Hu, Taizhong, 2012. "Stochastic comparisons of capital allocations with applications," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 293-298.
    17. Hua, Lei & Cheung, Ka Chun, 2008. "Stochastic orders of scalar products with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 865-872, June.
    18. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    19. Peter Laurence & Tai-Ho Wang, 2008. "Distribution-free upper bounds for spread options and market-implied antimonotonicity gap," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 717-734.
    20. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:50:y:2012:i:3:p:423-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.