IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v33y2003i01p23-40_01.html
   My bibliography  Save this article

Dependence in Dynamic Claim Frequency Credibility Models

Author

Listed:
  • Purcaru, Oana
  • Denuit, Michel

Abstract

In nonlife insurance, actuaries usually resort to random effects to take unexplained heterogeneity into account (in the spirit of the Bühlmann-Straub model). This paper aims to study the kind of dependence induced by the introduction of correlated latent variables in the annual numbers of claims reported by policyholders. The effect of reporting claims on the a posteriori distribution of the random effects will be made precise. This will be done by establishing some stochastic monotonicity property of the a posteriori distribution with respect to the claims history.

Suggested Citation

  • Purcaru, Oana & Denuit, Michel, 2003. "Dependence in Dynamic Claim Frequency Credibility Models," ASTIN Bulletin, Cambridge University Press, vol. 33(1), pages 23-40, May.
  • Handle: RePEc:cup:astinb:v:33:y:2003:i:01:p:23-40_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100013283/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Limin Wen & Zhixin Yang & Quan Yuan, 2020. "Quantile Credibility Models with Common Effects," Risks, MDPI, vol. 8(4), pages 1-10, September.
    2. Muhsin Tamturk & Dominic Cortis & Mark Farrell, 2020. "Examining the Effects of Gradual Catastrophes on Capital Modelling and the Solvency of Insurers: The Case of COVID-19," Risks, MDPI, vol. 8(4), pages 1-13, December.
    3. Denise Desjardins & Georges Dionne & Yang Lu, 2023. "Hierarchical random‐effects model for the insurance pricing of vehicles belonging to a fleet," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 242-259, March.
    4. Qiang Zhang & Lijun Wu & Qianqian Cui, 2017. "The balanced credibility estimators with correlation risk and inflation factor," Statistical Papers, Springer, vol. 58(3), pages 659-672, September.
    5. Zhang, Jianjun & Qiu, Chunjuan & Wu, Xianyi, 2018. "Bayesian ratemaking with common effects modeled by mixture of Polya tree processes," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 87-94.
    6. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2006. "Vehicle and Fleet Random Effects in a Model of Insurance Rating for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 25-77, May.
    7. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    8. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    9. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2018. "Modelling And Estimating Individual And Firm Effects With Count Panel Data," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1049-1078, September.
    10. Bolance, Catalina & Guillen, Montserrat & Pinquet, Jean, 2003. "Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 273-282, October.
    11. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    13. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
    14. Wen, Limin & Wu, Xianyi & Zhou, Xian, 2009. "The credibility premiums for models with dependence induced by common effects," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 19-25, February.
    15. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:33:y:2003:i:01:p:23-40_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.