IDEAS home Printed from https://ideas.repec.org/p/vnm/wpaper/165.html
   My bibliography  Save this paper

Some proposals about multivariate risk measurement

Author

Listed:
  • Marta Cardin

    (Department of Applied Mathematics, University of Venice)

  • Elisa Pagani

    (Department of Quantitative Methods, University Bicocca of Milan)

Abstract

In actuarial literature the properties of risk measures or insurance premium principles have been extensively studied. In our work we propose a characterization of some particular classes of multivariate and bivariate risk measures. Given two random variables we can define an univariate integral stochastic ordering by considering a set of functions that, through their peculiar properties, originate different stochastic orderings. These stochastic order relations of integral form may be extended to cover also the case of random vectors. It is, in fact, proposed a kind of stop-loss premium, and then a stop-loss order in the multivariate setting and some equivalent conditions. We propose an axiomatic approach based on a minimal set of properties which characterizes an insurance premium principle. In the univariate case we know that Conditional Value at Risk can be represented through distortion risk measures and a distortion risk measure can be viewed as a combination of CVaRs, we propose a generalization of this result in a multivariate framework. In the bivariate case we want to compare the concept of risk measure to that one of concordance measure when the marginals are given.

Suggested Citation

  • Marta Cardin & Elisa Pagani, 2008. "Some proposals about multivariate risk measurement," Working Papers 165, Department of Applied Mathematics, Università Ca' Foscari Venezia.
  • Handle: RePEc:vnm:wpaper:165
    as

    Download full text from publisher

    File URL: http://virgo.unive.it/wpideas/storage/2008wp165.pdf
    File Function: First version, 2008
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    2. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    3. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    4. Marta Cardin & Graziella Pacelli, 2008. "Characterization of Convex Premium Principles," Springer Books, in: Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods in Insurance and Finance, pages 53-60, Springer.
    5. Wu, Xianyi & Zhou, Xian, 2006. "A new characterization of distortion premiums via countable additivity for comonotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 324-334, April.
    6. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    7. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    8. Scarsini, Marco, 1985. "Stochastic dominance with pair-wise risk aversion," Journal of Mathematical Economics, Elsevier, vol. 14(2), pages 187-201, April.
    9. Denuit, Michel & Lefevre, Claude & Mesfioui, M'hamed, 1999. "A class of bivariate stochastic orderings, with applications in actuarial sciences," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 31-50, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Taizhong & Wu, Zhiqiang, 1999. "On dependence of risks and stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 323-332, May.
    2. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    3. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    4. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    5. Wei, Gang & Hu, Taizhong, 2002. "Supermodular dependence ordering on a class of multivariate copulas," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 375-385, May.
    6. Marta_Cardin & Paola_Ferretti, 2004. "Some theory of bivariate risk attitude," Game Theory and Information 0411009, University Library of Munich, Germany.
    7. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    8. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    9. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    10. Bauerle, Nicole, 2002. "Risk management in credit risk portfolios with correlated assets," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 187-198, April.
    11. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    12. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    13. Kulik, Rafal & Szekli, Ryszard, 2005. "Dependence orderings for some functionals of multivariate point processes," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 145-173, January.
    14. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    15. Li, Xiaohu & Lin, Jianhua, 2011. "Stochastic orders in time transformed exponential models with applications," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 47-52, July.
    16. Paola Ferretti & Antonella Campana, 2011. "XL reinsurance with reinstatements and initial premium feasibility in exchangeability hypothesis," Working Papers 2011_14, Department of Economics, University of Venice "Ca' Foscari".
    17. Friedrich Schmid & Rafael Schmidt, 2007. "Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 66(3), pages 323-354, November.
    18. Muller, Alfred & Pflug, Georg, 2001. "Asymptotic ruin probabilities for risk processes with dependent increments," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 381-392, June.
    19. Cousin, Areski & Laurent, Jean-Paul, 2008. "Comparison results for exchangeable credit risk portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1118-1127, June.
    20. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vnm:wpaper:165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daria Arkhipova (email available below). General contact details of provider: https://edirc.repec.org/data/dmvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.