IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v82y2018icp191-200.html
   My bibliography  Save this article

Solvency II, or how to sweep the downside risk under the carpet

Author

Listed:
  • Weber, Stefan

Abstract

Under Solvency II the computation of capital requirements is based on value at risk (V@R). V@R is a quantile-based risk measure and neglects extreme risks in the tail. V@R belongs to the family of distortion risk measures. A serious deficiency of V@R is that firms can hide their total downside risk in corporate networks, unless a consolidated solvency balance sheet is required for each economic scenario. In this case, they can largely reduce their total capital requirements via appropriate transfer agreements within a network structure consisting of sufficiently many entities and thereby circumvent capital regulation. We prove several versions of such a result for general distortion risk measures of V@R-type, explicitly construct suitable allocations of the network portfolio, and finally demonstrate how these findings can be extended beyond distortion risk measures. We also discuss why consolidation requirements cannot completely eliminate this problem. Capital regulation should thus be based on coherent or convex risk measures like average value at risk or expectiles.

Suggested Citation

  • Weber, Stefan, 2018. "Solvency II, or how to sweep the downside risk under the carpet," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 191-200.
  • Handle: RePEc:eee:insuma:v:82:y:2018:i:c:p:191-200
    DOI: 10.1016/j.insmatheco.2017.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717300975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    2. E. Jouini & W. Schachermayer & N. Touzi, 2008. "Optimal Risk Sharing For Law Invariant Monetary Utility Functions," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 269-292, April.
    3. Andreas Haier & Ilya Molchanov & Michael Schmutz, 2015. "Intragroup transfers, intragroup diversification and their risk assessment," Papers 1511.06320, arXiv.org, revised Nov 2016.
    4. Andreas Haier & Ilya Molchanov & Michael Schmutz, 2016. "Intragroup transfers, intragroup diversification and their risk assessment," Annals of Finance, Springer, vol. 12(3), pages 363-392, December.
    5. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    6. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    7. repec:dau:papers:123456789/361 is not listed on IDEAS
    8. Paul Embrechts & Haiyan Liu & Ruodu Wang, 2017. "Quantile-Based Risk Sharing," Swiss Finance Institute Research Paper Series 17-54, Swiss Finance Institute.
    9. Damir Filipović & Michael Kupper, 2008. "Optimal Capital And Risk Transfers For Group Diversification," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 55-76, January.
    10. Song, Yongsheng & Yan, Jia-An, 2009. "Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 459-465, December.
    11. Philipp Keller, 2007. "Group Diversification," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 32(3), pages 382-392, July.
    12. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    13. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    14. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    15. Ruodu Wang, 2016. "Regulatory arbitrage of risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 337-347, March.
    16. Hans Föllmer & Stefan Weber, 2015. "The Axiomatic Approach to Risk Measures for Capital Determination," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 301-337, December.
    17. Christiansen, Marcus C. & Niemeyer, Andreas, 2014. "Fundamental Definition Of The Solvency Capital Requirement In Solvency Ii," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 501-533, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    2. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    3. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    4. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    5. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    6. George Tzagkarakis & Frantz Maurer, 2020. "An energy-based measure for long-run horizon risk quantification," Annals of Operations Research, Springer, vol. 289(2), pages 363-390, June.
    7. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    8. Matteo Burzoni & Cosimo Munari & Ruodu Wang, 2020. "Adjusted Expected Shortfall," Papers 2007.08829, arXiv.org, revised Aug 2021.
    9. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    10. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    11. Zähle, Henryk, 2016. "A definition of qualitative robustness for general point estimators, and examples," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 12-31.
    12. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    13. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    14. Koch-Medina Pablo & Munari Cosimo, 2014. "Law-invariant risk measures: Extension properties and qualitative robustness," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 215-236, December.
    15. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    16. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    17. Wang, Ruodu & Wei, Yunran, 2020. "Characterizing optimal allocations in quantile-based risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 288-300.
    18. Ruodu Wang, 2016. "Regulatory arbitrage of risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 337-347, March.
    19. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2017. "Domains of weak continuity of statistical functionals with a view toward robust statistics," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 1-19.
    20. Krätschmer Volker & Schied Alexander & Zähle Henryk, 2015. "Quasi-Hadamard differentiability of general risk functionals and its application," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 25-47, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:82:y:2018:i:c:p:191-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.