IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v2y2007i02p217-232_00.html
   My bibliography  Save this article

Some Finite Time Ruin Problems

Author

Listed:
  • Dickson, D. C. M.

Abstract

In the classical risk model, we use probabilistic arguments to write down expressions in terms of the density function of aggregate claims for joint density functions involving the time to ruin, the deficit at ruin and the surplus prior to ruin. We give some applications of these formulae in the cases when the individual claim amount distribution is exponential and Erlang(2).

Suggested Citation

  • Dickson, D. C. M., 2007. "Some Finite Time Ruin Problems," Annals of Actuarial Science, Cambridge University Press, vol. 2(2), pages 217-232, September.
  • Handle: RePEc:cup:anacsi:v:2:y:2007:i:02:p:217-232_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499500000348/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dickson, David C.M., 2016. "A note on some joint distribution functions involving the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 120-124.
    2. Trung Kien Nguyen & Nguyen Thanh Hung & Huong Nguyen-Thu, 2020. "A linear time algorithm for the p-maxian problem on trees with distance constraint," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1030-1043, November.
    3. Dickson, David C.M., 2012. "The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 334-337.
    4. Li, Jingchao & Dickson, David C.M. & Li, Shuanming, 2015. "Some ruin problems for the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 1-8.
    5. Wei Ding & Ke Qiu, 2018. "A quadratic time exact algorithm for continuous connected 2-facility location problem in trees," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1262-1298, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:2:y:2007:i:02:p:217-232_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.