IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v59y2002i4p367-378.html
   My bibliography  Save this article

Approximations for moments of deficit at ruin with exponential and subexponential claims

Author

Listed:
  • Cheng, Yebin
  • Tang, Qihe
  • Yang, Hailiang

Abstract

Consider a renewal insurance risk model with initial surplus u>0 and let Au denote the deficit at the time of ruin. This paper investigates the asymptotic behavior of the moments of Au as u tends to infinity. Under the assumption that the claim size is exponentially or subexponentially distributed, we obtain some asymptotic relationships for the [phi]-moments of Au, where [phi] is a non-negative and non-decreasing function satisfying certain conditions.

Suggested Citation

  • Cheng, Yebin & Tang, Qihe & Yang, Hailiang, 2002. "Approximations for moments of deficit at ruin with exponential and subexponential claims," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 367-378, October.
  • Handle: RePEc:eee:stapro:v:59:y:2002:i:4:p:367-378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00234-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmidli, Hanspeter, 1999. "On the Distribution of the Surplus Prior and at Ruin," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 227-244, November.
    2. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    3. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    4. Dufresne, Francois & Gerber, Hans U., 1988. "The probability and severity of ruin for combinations of exponential claim amount distributions and their translations," Insurance: Mathematics and Economics, Elsevier, vol. 7(2), pages 75-80, April.
    5. Dufresne, Francois & Gerber, Hans U., 1988. "The surpluses immediately before and at ruin, and the amount of the claim causing ruin," Insurance: Mathematics and Economics, Elsevier, vol. 7(3), pages 193-199, October.
    6. Dickson, David C. M. & Waters, Howard R., 1992. "The Probability and Severity of Ruin in Finite and Infinite Time," ASTIN Bulletin, Cambridge University Press, vol. 22(2), pages 177-190, November.
    7. Veraverbeke, N., 1977. "Asymptotic behaviour of Wiener-Hopf factors of a random walk," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 27-37, February.
    8. Hailiang Yang & Lihong Zhang, 2001. "The Joint Distribution of Surplus Immediately before Ruin and the Deficit at Ruin under Interest Force," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(3), pages 92-103.
    9. Yang, Hailiang & Zhang, Lihong, 2001. "On the distribution of surplus immediately before ruin under interest force," Statistics & Probability Letters, Elsevier, vol. 55(3), pages 329-338, December.
    10. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    11. Gerber, Hans U. & Shiu, Elias S. W., 1997. "The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 129-137, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kaiyong & Yang, Yang & Yu, Changjun, 2013. "Estimates for the overshoot of a random walk with negative drift and non-convolution equivalent increments," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1504-1512.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    2. Cai, Jun & Dickson, David C. M., 2002. "On the expected discounted penalty function at ruin of a surplus process with interest," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 389-404, June.
    3. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    4. Schmidli, Hanspeter, 2015. "Extended Gerber–Shiu functions in a risk model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 271-275.
    5. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    6. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    7. Yang, Hailiang & Zhang, Lihong, 2001. "On the distribution of surplus immediately after ruin under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 247-255, October.
    8. Tsai, Cary Chi-Liang & Sun, Li-juan, 2004. "On the discounted distribution functions for the Erlang(2) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 5-19, August.
    9. Usabel, M. A., 1999. "A note on the Taylor series expansions for multivariate characteristics of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 37-47, September.
    10. Tsai, Cary Chi-Liang, 2001. "On the discounted distribution functions of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 401-419, June.
    11. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    12. Frey, Andreas & Schmidt, Volker, 1996. "Taylor-series expansion for multivariate characteristics of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 1-12, May.
    13. Hailiang Yang & Lihong Zhang, 2006. "Ruin problems for a discrete time risk model with random interest rate," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(2), pages 287-299, May.
    14. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    15. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    16. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    17. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    18. Usabel, M. A., 1999. "Practical approximations for multivariate characteristics of risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 397-413, December.
    19. Willmot, Gordon E. & Dickson, David C. M., 2003. "The Gerber-Shiu discounted penalty function in the stationary renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 403-411, July.
    20. Psarrakos, Georgios, 2009. "Asymptotic results for heavy-tailed distributions using defective renewal equations," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 774-779, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:59:y:2002:i:4:p:367-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.