IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i1p12-18.html
   My bibliography  Save this article

Finite time ruin problems for the Erlang(2) risk model

Author

Listed:
  • Dickson, David C.M.
  • Li, Shuanming

Abstract

We consider the Erlang(2) risk model and derive expressions for the density of the time to ruin and the joint density of the time to ruin and the deficit at ruin when the individual claim amount distribution is (i) an exponential distribution and (ii) an Erlang(2) distribution. We also consider the special case when the initial surplus is zero.

Suggested Citation

  • Dickson, David C.M. & Li, Shuanming, 2010. "Finite time ruin problems for the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 12-18, February.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:12-18
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00051-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borovkov, Konstantin A. & Dickson, David C.M., 2008. "On the ruin time distribution for a Sparre Andersen process with exponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1104-1108, June.
    2. Willmot, Gordon E., 2007. "On the discounted penalty function in the renewal risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 17-31, July.
    3. Gordon Willmot & Jae-Kyung Woo, 2007. "On the Class of Erlang Mixtures with Risk Theoretic Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 99-115.
    4. Dickson, David C.M., 2008. "Some Explicit Solutions for the Joint Density of the Time of Ruin and the Deficit at Ruin," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 259-276, May.
    5. Li, Shuanming & Garrido, Jose, 2004. "On ruin for the Erlang(n) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 391-408, June.
    6. Garcia, Jorge M.A., 2005. "Explicit Solutions for Survival Probabilities in the Classical Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 113-130, May.
    7. Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
    8. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    9. Sun, Li-Juan, 2005. "The expected discounted penalty at ruin in the Erlang (2) risk process," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 205-217, May.
    10. Dickson, David C. M. & Hipp, Christian, 2001. "On the time to ruin for Erlang(2) risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 333-344, December.
    11. Dickson, David C.M. & Willmot, Gordon E., 2005. "The Density of the Time to Ruin in the Classical Poisson Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 45-60, May.
    12. Drekic, Steve & Willmot, Gordon E., 2003. "On the Density and Moments of the Time of Ruin with Exponential Claims," ASTIN Bulletin, Cambridge University Press, vol. 33(1), pages 11-21, May.
    13. Eric Cheung & David Dickson & Steve Drekic, 2008. "Moments of Discounted Dividends for a Threshold Strategy in the Compound Poisson Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(3), pages 299-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frostig, Esther & Pitts, Susan M. & Politis, Konstadinos, 2012. "The time to ruin and the number of claims until ruin for phase-type claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 19-25.
    2. Feng, Runhuan & Volkmer, Hans W., 2012. "Modeling credit value adjustment with downgrade-triggered termination clause using a ruin theoretic approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 409-421.
    3. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    4. Li, Shuanming & Lu, Yi, 2017. "Distributional study of finite-time ruin related problems for the classical risk model," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 319-330.
    5. Dickson, David C.M. & Li, Shuanming, 2013. "The distributions of the time to reach a given level and the duration of negative surplus in the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 490-497.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    2. Landriault, David & Shi, Tianxiang & Willmot, Gordon E., 2011. "Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 371-379.
    3. Yi Lu, 2016. "On the Evaluation of Expected Penalties at Claim Instants That Cause Ruin in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 237-255, March.
    4. Dickson, David C.M. & Li, Shuanming, 2013. "The distributions of the time to reach a given level and the duration of negative surplus in the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 490-497.
    5. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    6. Cheung, Eric C.K. & Landriault, David & Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 117-126, February.
    7. Dickson, David C.M., 2016. "A note on some joint distribution functions involving the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 120-124.
    8. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    9. Landriault, David & Willmot, Gordon, 2008. "On the Gerber-Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 600-608, April.
    10. Cheung, Eric C.K., 2013. "Moments of discounted aggregate claim costs until ruin in a Sparre Andersen risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 343-354.
    11. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    12. Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Surplus analysis for a class of Coxian interclaim time distributions with applications to mixed Erlang claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 32-41, February.
    13. Willmot, Gordon E. & Woo, Jae-Kyung, 2012. "On the analysis of a general class of dependent risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 134-141.
    14. Jing Wang & Zbigniew Palmowski & Corina Constantinescu, 2021. "How Much We Gain by Surplus-Dependent Premiums—Asymptotic Analysis of Ruin Probability," Risks, MDPI, vol. 9(9), pages 1-17, August.
    15. David Landriault & Jean-François Renaud & Xiaowen Zhou, 2014. "An Insurance Risk Model with Parisian Implementation Delays," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 583-607, September.
    16. Landriault, David & Lemieux, Christiane & Willmot, Gordon E., 2012. "An adaptive premium policy with a Bayesian motivation in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 370-378.
    17. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    18. Cheung, Eric C.K. & Liu, Haibo & Willmot, Gordon E., 2018. "Joint moments of the total discounted gains and losses in the renewal risk model with two-sided jumps," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 358-377.
    19. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.
    20. Landriault, David & Li, Bin & Shi, Tianxiang & Xu, Di, 2019. "On the distribution of classic and some exotic ruin times," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 38-45.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:12-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.