IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v55y2014icp78-90.html
   My bibliography  Save this article

Asymptotic theory for the empirical Haezendonck–Goovaerts risk measure

Author

Listed:
  • Ahn, Jae Youn
  • Shyamalkumar, Nariankadu D.

Abstract

Haezendonck–Goovaerts risk measures is a recently introduced class of risk measures which includes, as its minimal member, the Tail Value-at-Risk (T-VaR)—T-VaR arguably the most popular risk measure in global insurance regulation. In applications often one has to estimate the risk measure given a random sample from an unknown distribution. The distribution could either be truly unknown or could be the distribution of a complex function of economic and idiosyncratic variables with the complexity of the function rendering indeterminable its distribution. Hence statistical procedures for the estimation of Haezendonck–Goovaerts risk measures are a key requirement for their use in practice. A natural estimator of the Haezendonck–Goovaerts risk measure is the Haezendonck–Goovaerts risk measure of the empirical distribution, but its statistical properties have not yet been explored in detail. The main goal of this article is to both establish the strong consistency of this estimator and to derive weak convergence limits for this estimator. We also conduct a simulation study to lend insight into the sample sizes required for these asymptotic limits to take hold.

Suggested Citation

  • Ahn, Jae Youn & Shyamalkumar, Nariankadu D., 2014. "Asymptotic theory for the empirical Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 78-90.
  • Handle: RePEc:eee:insuma:v:55:y:2014:i:c:p:78-90
    DOI: 10.1016/j.insmatheco.2013.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713002059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Jones & Ričardas Zitikis, 2003. "Empirical Estimation of Risk Measures and Related Quantities," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 44-54.
    2. B. John Manistre & Geoffrey Hancock, 2005. "Variance of the CTE Estimator," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 129-156.
    3. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    4. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    5. Krätschmer, Volker & Zähle, Henryk, 2011. "Sensitivity of risk measures with respect to the normal approximation of total claim distributions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 335-344.
    6. Bellini Fabio & Rosazza Gianin Emanuela, 2008. "Optimal portfolios with Haezendonck risk measures," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 89-108, March.
    7. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    8. Beutner, Eric & Zähle, Henryk, 2010. "A modified functional delta method and its application to the estimation of risk functionals," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2452-2463, November.
    9. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2004. "Some new classes of consistent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 505-516, June.
    10. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    11. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2003. "A Unified Approach to Generate Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 173-191, November.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Haezendonck, J. & Goovaerts, M., 1982. "A new premium calculation principle based on Orlicz norms," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 41-53, January.
    14. Jae Youn Ahn & Nariankadu Shyamalkumar, 2011. "Large Sample Behavior of the CTE and VaR Estimators under Importance Sampling," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(3), pages 393-416.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    16. Bellini, Fabio & Rosazza Gianin, Emanuela, 2012. "Haezendonck–Goovaerts risk measures and Orlicz quantiles," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 107-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niushan Gao & Cosimo Munari & Foivos Xanthos, 2019. "Stability properties of Haezendonck-Goovaerts premium principles," Papers 1909.10735, arXiv.org, revised Aug 2020.
    2. Xun, Li & Zhou, Yangzhi & Zhou, Yong, 2019. "A generalization of Expected Shortfall based capital allocation," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 193-199.
    3. Liu, Qing & Peng, Liang & Wang, Xing, 2017. "Haezendonck–Goovaerts risk measure with a heavy tailed loss," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 28-47.
    4. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    5. Tang, Qihe & Yang, Fan, 2014. "Extreme value analysis of the Haezendonck–Goovaerts risk measure with a general Young function," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 311-320.
    6. Gao, Niushan & Munari, Cosimo & Xanthos, Foivos, 2020. "Stability properties of Haezendonck–Goovaerts premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 94-99.
    7. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    8. Wang, Xing & Peng, Liang, 2016. "Inference for intermediate Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 231-240.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellini, Fabio & Rosazza Gianin, Emanuela, 2012. "Haezendonck–Goovaerts risk measures and Orlicz quantiles," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 107-114.
    2. Mao, Tiantian & Hu, Taizhong, 2012. "Second-order properties of the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 333-343.
    3. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    4. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    5. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    6. Tang, Qihe & Yang, Fan, 2014. "Extreme value analysis of the Haezendonck–Goovaerts risk measure with a general Young function," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 311-320.
    7. Xun, Li & Jiang, Renqiao & Guo, Jianhua, 2021. "The conditional Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 169(C).
    8. Niushan Gao & Cosimo Munari & Foivos Xanthos, 2019. "Stability properties of Haezendonck-Goovaerts premium principles," Papers 1909.10735, arXiv.org, revised Aug 2020.
    9. Zhiping Chen & Qianhui Hu & Ruiyue Lin, 2016. "Performance ratio-based coherent risk measure and its application," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 681-693, May.
    10. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    11. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    12. Bellini Fabio & Rosazza Gianin Emanuela, 2008. "Optimal portfolios with Haezendonck risk measures," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 89-108, March.
    13. Wang, Xing & Peng, Liang, 2016. "Inference for intermediate Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 231-240.
    14. Soren Bettels & Stefan Weber, 2024. "An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models," Papers 2408.02401, arXiv.org.
    15. Xun, Li & Zhou, Yangzhi & Zhou, Yong, 2019. "A generalization of Expected Shortfall based capital allocation," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 193-199.
    16. Krätschmer, Volker & Zähle, Henryk, 2011. "Sensitivity of risk measures with respect to the normal approximation of total claim distributions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 335-344.
    17. Canna, Gabriele & Centrone, Francesca & Rosazza Gianin, Emanuela, 2021. "Haezendonck-Goovaerts capital allocation rules," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 173-185.
    18. Gao, Niushan & Munari, Cosimo & Xanthos, Foivos, 2020. "Stability properties of Haezendonck–Goovaerts premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 94-99.
    19. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    20. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:55:y:2014:i:c:p:78-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.