IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v324y2003i1p157-166.html
   My bibliography  Save this article

Characterization of large price variations in financial markets

Author

Listed:
  • Johansen, Anders

Abstract

Statistics of drawdowns (loss from the last local maximum to the next local minimum) plays an important role in risk assessment of investment strategies. As they incorporate higher (> two) order correlations, they offer a better measure of real market risks than the variance or other cumulants of daily (or some other fixed time scale) of returns. Previous results have shown that the vast majority of drawdowns occurring on the major financial markets have a distribution which is well represented by a stretched exponential, while the largest drawdowns are occurring with a significantly larger rate than predicted by the bulk of the distribution and should thus be characterized as outliers (Eur. Phys. J. B 1 (1998) 141; J. Risk 2001). In the present analysis, the definition of drawdowns is generalized to coarse-grained drawdowns or so-called ε-drawdowns and a link between such ε-outliers and preceding log-periodic power law bubbles previously identified (Quantitative Finance 1 (2001) 452) is established.

Suggested Citation

  • Johansen, Anders, 2003. "Characterization of large price variations in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 157-166.
  • Handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:157-166
    DOI: 10.1016/S0378-4371(02)01843-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102018435
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01843-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    2. Fabrizio Lillo & Rosario N. Mantegna, 2000. "Symmetry alteration of ensemble return distribution in crash and rally days of financial markets," Papers cond-mat/0002438, arXiv.org.
    3. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    4. Sornette, Didier & Johansen, Anders, 1997. "Large financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 411-422.
    5. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    6. A. Johansen & D. Sornette, 1998. "Stock market crashes are outliers," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 1(2), pages 141-143, January.
    7. Anders Johansen & Didier Sornette, 1999. "Critical Crashes," Papers cond-mat/9901035, arXiv.org.
    8. Anders Johansen & Didier Sornette, 2000. "The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash," Papers cond-mat/0004263, arXiv.org, revised May 2000.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Xing Zhou & Didier Sornette, 2003. "Nonparametric Analyses Of Log-Periodic Precursors To Financial Crashes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1107-1125.
    2. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    3. A. Johansen & D. Sornette, 2002. "Endogenous versus Exogenous Crashes in Financial Markets," Papers cond-mat/0210509, arXiv.org.
    4. Zhou, Wei-Xing & Sornette, Didier, 2003. "Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 543-583.
    5. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
    6. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    7. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    8. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
    9. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    10. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    11. Zhou, Wei-Xing & Sornette, Didier, 2004. "Antibubble and prediction of China's stock market and real-estate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 243-268.
    12. Sornette, Didier & Zhou, Wei-Xing, 2004. "Evidence of fueling of the 2000 new economy bubble by foreign capital inflow: implications for the future of the US economy and its stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 412-440.
    13. D. Sornette & R. Woodard, "undated". "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Working Papers CCSS-09-003, ETH Zurich, Chair of Systems Design.
    14. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Shocks in financial markets, price expectation, and damped harmonic oscillators," Papers 1103.1992, arXiv.org, revised Sep 2011.
    15. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    16. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    17. Alexey Fomin & Andrey Korotayev & Julia Zinkina, 2016. "Negative oil price bubble is likely to burst in March - May 2016. A forecast on the basis of the law of log-periodical dynamics," Papers 1601.04341, arXiv.org.
    18. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    19. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    20. Damian Smug & Peter Ashwin & Didier Sornette, 2018. "Predicting financial market crashes using ghost singularities," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:157-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.