IDEAS home Printed from https://ideas.repec.org/a/sgh/annals/i51y2018p255-270.html
   My bibliography  Save this article

Drawdown insurance contracts for the Lévy-type model with the phase-type jump distribution and general reward function

Author

Listed:
  • Zbigniew Palmowski

    (Politechnika Wrocławska, Wydział Matematyki)

  • Joanna Tumilewicz

    (Uniwersytet Wrocławski, Wydział Matematyki i Informatyki)

Abstract

In this paper, we consider an insurance contract which insure against a fall of some pre-specified level below an asset’s maximal value. This situation may cause huge losses to investors and it gives a reason to create an insurance against such a situation. We model a risky asset by the geometric Browanian motion with jumps having the phase-type distribution. We define the drawdown proces as a difference between the supremum of underlying process and its current value. For this model, we construct insturance against a huge drawdown. In this contract, an insurance company commits to pay reward at a drawdown epoch. In return, an investor pays continuously a consant premium up to the drawdown moment. This work is based on the paper of Palmowski and Tumilewicz18, in which the authors presented a mathematical model for some insurance contracts against the drawdown for spectrally negative Lévy processes. Here, we focus on numerical analysis of one of such contracts when jumps are of the phase-type.

Suggested Citation

  • Zbigniew Palmowski & Joanna Tumilewicz, 2018. "Drawdown insurance contracts for the Lévy-type model with the phase-type jump distribution and general reward function," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 51, pages 255-270.
  • Handle: RePEc:sgh:annals:i:51:y:2018:p:255-270
    as

    Download full text from publisher

    File URL: http://rocznikikae.sgh.waw.pl/p/roczniki_kae_z51_12.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palmowski, Zbigniew & Tumilewicz, Joanna, 2018. "Pricing insurance drawdown-type contracts with underlying Lévy assets," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 1-14.
    2. Libor Pospisil & Jan Vecer, 2010. "Portfolio sensitivity to changes in the maximum and the maximum drawdown," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 617-627.
    3. Peter Carr & Hongzhong Zhang & Olympia Hadjiliadis, 2011. "Maximum Drawdown Insurance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1195-1230.
    4. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Fair valuation of L\'evy-type drawdown-drawup contracts with general insured and penalty functions," Papers 1712.04418, arXiv.org, revised Feb 2018.
    5. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    6. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, September.
    2. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Fair valuation of L\'evy-type drawdown-drawup contracts with general insured and penalty functions," Papers 1712.04418, arXiv.org, revised Feb 2018.
    3. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    4. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    5. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Pricing insurance drawdown-type contracts with underlying L\'evy assets," Papers 1701.01891, arXiv.org, revised Oct 2017.
    6. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
    7. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    8. Palmowski, Zbigniew & Tumilewicz, Joanna, 2018. "Pricing insurance drawdown-type contracts with underlying Lévy assets," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 1-14.
    9. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    10. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    11. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    12. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    13. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    14. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    15. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    16. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    17. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    18. Mendes, Beatriz Vaz de Melo & Lavrado, Rafael Coelho, 2017. "Implementing and testing the Maximum Drawdown at Risk," Finance Research Letters, Elsevier, vol. 22(C), pages 95-100.
    19. Long Bai & Peng Liu, 2019. "Drawdown and Drawup for Fractional Brownian Motion with Trend," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1581-1612, September.
    20. Baurdoux, Erik J. & Palmowski, Z & Pistorius, Martijn R, 2017. "On future drawdowns of Lévy processes," LSE Research Online Documents on Economics 84342, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:annals:i:51:y:2018:p:255-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michał Bernardelli (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.