IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i3p1067-1085.html
   My bibliography  Save this article

Static super-replicating strategies for a class of exotic options

Author

Listed:
  • Chen, X.
  • Deelstra, G.
  • Dhaene, J.
  • Vanmaele, M.

Abstract

In this paper, we investigate static super-replicating strategies for European-type call options written on a weighted sum of asset prices. This class of exotic options includes Asian options and basket options among others. We assume that there exists a market where the plain vanilla options on the different assets are traded and hence their prices can be observed in the market. Both the infinite market case (where prices of the plain vanilla options are available for all strikes) and the finite market case (where only a finite number of plain vanilla option prices are observed) are considered. We prove that the finite market case converges to the infinite market case when the number of observed plain vanilla option prices tends to infinity. We show how to construct a portfolio consisting of the plain vanilla options on the different assets, whose pay-off super-replicates the pay-off of the exotic option. As a consequence, the price of the super-replicating portfolio is an upper bound for the price of the exotic option. The super-hedging strategy is model-free in the sense that it is expressed in terms of the observed option prices on the individual assets, which can be e.g. dividend paying stocks with no explicit dividend process known. This paper is a generalization of the work of Simon et al. [Simon, S., Goovaerts, M., Dhaene, J., 2000. An easy computable upper bound for the price of an arithmetic Asian option. Insurance Math. Econom. 26 (2-3), 175-184] who considered this problem for Asian options in the infinite market case. Laurence and Wang [Laurence, P., Wang, T.H., 2004. What's a basket worth? Risk Mag. 17, 73-77] and Hobson et al. [Hobson, D., Laurence, P., Wang, T.H., 2005. Static-arbitrage upper bounds for the prices of basket options. Quant. Fin. 5 (4), 329-342] considered this problem for basket options, in the infinite as well as in the finite market case. As opposed to Hobson et al. [Hobson, D., Laurence, P., Wang, T.H., 2005. Static-arbitrage upper bounds for the prices of basket options. Quant. Fin. 5 (4), 329-342] who use Lagrange optimization techniques, the proofs in this paper are based on the theory of integral stochastic orders and on the theory of comonotonic risks.

Suggested Citation

  • Chen, X. & Deelstra, G. & Dhaene, J. & Vanmaele, M., 2008. "Static super-replicating strategies for a class of exotic options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1067-1085, June.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:1067-1085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00015-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    4. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    5. Kaas, R. & Dhaene, J. & Vyncke, D. & Goovaerts, M.J. & Denuit, M., 2002. "A Simple Geometric Proof that Comonotonic Risks Have the Convex-Largest Sum," ASTIN Bulletin, Cambridge University Press, vol. 32(1), pages 71-80, May.
    6. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    7. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    8. L. Rüschendorf, 1983. "Solution of a statistical optimization problem by rearrangement methods," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 30(1), pages 55-61, December.
    9. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    10. David Hobson & Peter Laurence & Tai-Ho Wang, 2005. "Static-arbitrage upper bounds for the prices of basket options," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 329-342.
    11. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    12. Nielsen, J. Aase & Sandmann, Klaus, 2003. "Pricing Bounds on Asian Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(2), pages 449-473, June.
    13. Reynaerts, Huguette & Vanmaele, Michele & Dhaene, Jan & Deelstra, Griselda, 2006. "Bounds for the price of a European-style Asian option in a binary tree model," European Journal of Operational Research, Elsevier, vol. 168(2), pages 322-332, January.
    14. Simon, S. & Goovaerts, M. J. & Dhaene, J., 2000. "An easy computable upper bound for the price of an arithmetic Asian option," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 175-183, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    2. H. Albrecher & P. A. Mayer & W. Schoutens, 2008. "General Lower Bounds for Arithmetic Asian Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 123-149.
    3. Grzegorz Darkiewicz & Griselda Deelstra & Jan Dhaene & Tom Hoedemakers & Michèle Vanmaele, 2009. "Bounds for Right Tails of Deterministic and Stochastic Sums of Random Variables," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 847-866, December.
    4. Hansjörg Albrecher & Philipp Mayer, 2010. "Semi-Static Hedging Strategies For Exotic Options," World Scientific Book Chapters, in: Rüdiger Kiesel & Matthias Scherer & Rudi Zagst (ed.), Alternative Investments And Strategies, chapter 14, pages 345-373, World Scientific Publishing Co. Pte. Ltd..
    5. Hürlimann, Werner, 2010. "Analytical Pricing of the Unit-Linked Endowment with Guarantees and Periodic Premiums," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 631-653, November.
    6. Robert, Christian Y., 2013. "Market Value Margin calculations under the Cost of Capital approach within a Bayesian chain ladder framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 216-229.
    7. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    8. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, September.
    9. Cheung, Ka Chun, 2006. "Optimal portfolio problem with unknown dependency structure," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 167-175, February.
    10. Peter Laurence & Tai-Ho Wang, 2008. "Distribution-free upper bounds for spread options and market-implied antimonotonicity gap," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 717-734.
    11. Nairn McWilliams & Sotirios Sabanis, 2011. "Arithmetic Asian Options under Stochastic Delay Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(5), pages 423-446, February.
    12. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    13. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    14. Vanduffel, S. & Dhaene, J. & Goovaerts, M. & Kaas, R., 2003. "The hurdle-race problem," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 405-413, October.
    15. Griselda Deelstra & Alexandre Petkovic & Michèle Vanmaele, 2008. "Pricing and Hedging Asian Basket Spread Options," Working Papers ECARES 2008_004, ULB -- Universite Libre de Bruxelles.
    16. Daniël Linders & Jan Dhaene & Wim Schoutens, 2015. "Option prices and model-free measurement of implied herd behavior in stock markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-35.
    17. Brückner, Karsten, 2008. "Quantifying the error of convex order bounds for truncated first moments," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 261-270, February.
    18. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    19. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    20. Runhuan Feng & Xiaochen Jing & Jan Dhaene, 2015. "Comonotonic Approximations of Risk Measures for Variable Annuity Guaranteed Benefits with Dynamic Policyholder Behavior," Tinbergen Institute Discussion Papers 15-008/IV/DSF85, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:1067-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.