Sample path large and moderate deviations for risk model with delayed claims
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
- Baldi, Paolo & Piccioni, Mauro, 1999. "A representation formula for the large deviation rate function for the empirical law of a continuous time Markov chain," Statistics & Probability Letters, Elsevier, vol. 41(2), pages 107-115, January.
- Hacène Djellout & Arnaud Guillin & Liming Wu, 1999. "Large and Moderate Deviations for Estimators of Quadratic Variational Processes of Diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 2(3), pages 195-225, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
- Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
- Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
- Hacène Djellout & Hui Jiang, 2018. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Post-Print hal-01147189, HAL.
- Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
- Djellout, Hacène & Samoura, Yacouba, 2014. "Large and moderate deviations of realized covolatility," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 30-37.
- Lehtomaa, Jaakko, 2015. "Limiting behaviour of constrained sums of two variables and the principle of a single big jump," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 157-163.
- Wolfgang Stadje, 1998. "Level-Crossing Properties of the Risk Process," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 576-584, August.
- Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2014. "Large Deviations Of The Realized (Co-)Volatility Vector," Working Papers hal-01082903, HAL.
- Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.
- Søren Asmussen & Romain Biard, 2011. "Ruin probabilities for a regenerative Poisson gap generated risk process," Post-Print hal-00569254, HAL.
- Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
- Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
- Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
- Xinwei Feng & Lidan He & Zhi Liu, 2022. "Large Deviation Principles of Realized Laplace Transform of Volatility," Journal of Theoretical Probability, Springer, vol. 35(1), pages 186-208, March.
- Gyllenberg, Mats & S. Silvestrov, Dmitrii, 2000. "Cramer-Lundberg approximation for nonlinearly perturbed risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 75-90, February.
- Tang, Qihe, 2007. "The overshoot of a random walk with negative drift," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 158-165, January.
- Griffin, Philip S. & Maller, Ross A. & Roberts, Dale, 2013. "Finite time ruin probabilities for tempered stable insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 478-489.
- Harri Nyrhinen, 2009. "On Large Deviations of Multivariate Heavy-Tailed Random Walks," Journal of Theoretical Probability, Springer, vol. 22(1), pages 1-17, March.
- Hacène Djellout & Hui Jiang, 2015. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Working Papers hal-01147189, HAL.
More about this item
Keywords
Large deviations Moderate deviations Risk model with delayed claims;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:1:p:74-80. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.