IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v26y2000i1p75-90.html
   My bibliography  Save this article

Cramer-Lundberg approximation for nonlinearly perturbed risk processes

Author

Listed:
  • Gyllenberg, Mats
  • S. Silvestrov, Dmitrii

Abstract

No abstract is available for this item.

Suggested Citation

  • Gyllenberg, Mats & S. Silvestrov, Dmitrii, 2000. "Cramer-Lundberg approximation for nonlinearly perturbed risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 75-90, February.
  • Handle: RePEc:eee:insuma:v:26:y:2000:i:1:p:75-90
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(99)00043-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
    2. Wikstad, Nils, 1971. "Exemplification of Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 6(2), pages 147-152, December.
    3. Gyllenberg, Mats & Silvestrov, Dmitrii S., 2000. "Nonlinearly perturbed regenerative processes and pseudo-stationary phenomena for stochastic systems," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose Blanchet & Bert Zwart, 2010. "Asymptotic expansions of defective renewal equations with applications to perturbed risk models and processor sharing queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 311-326, October.
    2. Mikael Petersson, 2017. "Quasi-Stationary Asymptotics for Perturbed Semi-Markov Processes in Discrete Time," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1047-1074, December.
    3. Arthur Charpentier, 2010. "Reinsurance, ruin and solvency issues: some pitfalls," Working Papers hal-00463381, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
    2. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    3. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    4. De Vylder, F. Etienne & Goovaerts, Marc J., 1999. "Explicit finite-time and infinite-time ruin probabilities in the continuous case," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 155-172, May.
    5. Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
    6. Lehtomaa, Jaakko, 2015. "Limiting behaviour of constrained sums of two variables and the principle of a single big jump," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 157-163.
    7. Yuguang Fan & Philip S. Griffin & Ross Maller & Alexander Szimayer & Tiandong Wang, 2017. "The Effects of Largest Claim and Excess of Loss Reinsurance on a Company’s Ruin Time and Valuation," Risks, MDPI, vol. 5(1), pages 1-27, January.
    8. Usabel, M. A., 1999. "Practical approximations for multivariate characteristics of risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 397-413, December.
    9. Wolfgang Stadje, 1998. "Level-Crossing Properties of the Risk Process," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 576-584, August.
    10. Jose Blanchet & Bert Zwart, 2010. "Asymptotic expansions of defective renewal equations with applications to perturbed risk models and processor sharing queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 311-326, October.
    11. Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.
    12. Søren Asmussen & Romain Biard, 2011. "Ruin probabilities for a regenerative Poisson gap generated risk process," Post-Print hal-00569254, HAL.
    13. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    14. Tang, Qihe, 2007. "The overshoot of a random walk with negative drift," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 158-165, January.
    15. Griffin, Philip S. & Maller, Ross A. & Roberts, Dale, 2013. "Finite time ruin probabilities for tempered stable insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 478-489.
    16. Harri Nyrhinen, 2009. "On Large Deviations of Multivariate Heavy-Tailed Random Walks," Journal of Theoretical Probability, Springer, vol. 22(1), pages 1-17, March.
    17. Usabel, Miguel, 1999. "Calculating multivariate ruin probabilities via Gaver-Stehfest inversion technique," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 133-142, November.
    18. Schmidli, Hanspeter, 2010. "Conditional law of risk processes given that ruin occurs," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 281-289, April.
    19. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.
    20. Sem Borst & Bert Zwart, 2005. "Fluid Queues with Heavy-Tailed M/G/∞ Input," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 852-879, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:26:y:2000:i:1:p:75-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.