IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v41y1999i2p107-115.html
   My bibliography  Save this article

A representation formula for the large deviation rate function for the empirical law of a continuous time Markov chain

Author

Listed:
  • Baldi, Paolo
  • Piccioni, Mauro

Abstract

We prove a representation formula for the rate function of the Large Deviation Principle for the empirical distribution of an irreducible continuous time Markov process on a finite state space. We use this representation to characterize asymptotically efficient intensities for the Monte Carlo evaluation of probabilities of a large deviation for the empirical distribution.

Suggested Citation

  • Baldi, Paolo & Piccioni, Mauro, 1999. "A representation formula for the large deviation rate function for the empirical law of a continuous time Markov chain," Statistics & Probability Letters, Elsevier, vol. 41(2), pages 107-115, January.
  • Handle: RePEc:eee:stapro:v:41:y:1999:i:2:p:107-115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00124-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Macci, Claudio & Torrisi, Giovanni Luca, 2004. "Asymptotic results for perturbed risk processes with delayed claims," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 307-320, April.
    2. Gao, Fuqing & Yan, Jun, 2009. "Sample path large and moderate deviations for risk model with delayed claims," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 74-80, August.
    3. Macci, Claudio, 2009. "Convergence of large deviation rates based on a link between wave governed random motions and ruin processes," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 255-263, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:41:y:1999:i:2:p:107-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.