IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i3p1118-1127.html
   My bibliography  Save this article

Comparison results for exchangeable credit risk portfolios

Author

Listed:
  • Cousin, Areski
  • Laurent, Jean-Paul

Abstract

This paper is dedicated to risk analysis of credit portfolios. Assuming that default indicators form an exchangeable sequence of Bernoulli random variables and as a consequence of de Finetti's theorem, default indicators are Binomial mixtures. We can characterize the supermodular order between two exchangeable Bernoulli random vectors in terms of the convex ordering of their corresponding mixture distributions. Thus we can proceed to some comparisons between stop-loss premiums, CDO tranche premiums and convex risk measures on aggregate losses. This methodology provides a unified analysis of dependence for a number of CDO pricing models based on factor copulas, multivariate Poisson and structural approaches.

Suggested Citation

  • Cousin, Areski & Laurent, Jean-Paul, 2008. "Comparison results for exchangeable credit risk portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1118-1127, June.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:1118-1127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00020-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cossette, Helene & Gaillardetz, Patrice & Marceau, Etienne & Rioux, Jacques, 2002. "On two dependent individual risk models," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 153-166, April.
    2. Jean-Paul Laurent & Jon Gregory, 2005. "Basket default swaps, CDOs and factor copulas," Post-Print hal-03679517, HAL.
    3. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    4. Wei, Gang & Hu, Taizhong, 2002. "Supermodular dependence ordering on a class of multivariate copulas," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 375-385, May.
    5. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    6. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    7. Dhaene, J. & Goovaerts, M. J., 1997. "On the dependency of risks in the individual life model," Insurance: Mathematics and Economics, Elsevier, vol. 19(3), pages 243-253, May.
    8. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margaret Meyer & Bruno Strulovici, 2013. "The Supermodular Stochastic Ordering," Discussion Papers 1563, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Dorinel Bastide & St'ephane Cr'epey, 2024. "Provisions and Economic Capital for Credit Losses," Papers 2401.07728, arXiv.org, revised Jan 2024.
    3. Giuseppe Genovese & Ashkan Nikeghbali & Nicola Serra & Gabriele Visentin, 2022. "Universal approximation of credit portfolio losses using Restricted Boltzmann Machines," Papers 2202.11060, arXiv.org, revised Apr 2023.
    4. Margaret Meyer & Bruno Strulovici, 2013. "Beyond Correlation: Measuring Interdependence Through Complementarities," Economics Series Working Papers 655, University of Oxford, Department of Economics.
    5. Areski Cousin & Stéphane Crépey & Yu Kan, 2012. "Delta-hedging correlation risk?," Review of Derivatives Research, Springer, vol. 15(1), pages 25-56, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasiadis, Simon & Chukova, Stefanka, 2012. "Multivariate insurance models: An overview," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 222-227.
    2. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    3. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    4. Kızıldemir, Bünyamin & Privault, Nicolas, 2015. "Supermodular ordering of Poisson arrays," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 136-143.
    5. Michel Denuit & Esther Frostig & Benny Levikson, 2007. "Supermodular Comparison of Time-to-Ruin Random Vectors," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 41-54, March.
    6. Albers, Willem, 1999. "Stop-loss premiums under dependence," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 173-185, May.
    7. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    8. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    9. Bauerle, Nicole, 2002. "Risk management in credit risk portfolios with correlated assets," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 187-198, April.
    10. Genest, Christian & Marceau, Etienne & Mesfioui, Mhamed, 2003. "Compound Poisson approximations for individual models with dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 73-91, February.
    11. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    12. Cousin, Areski & Di Bernardino, Elena, 2013. "On multivariate extensions of Value-at-Risk," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 32-46.
    13. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    14. Denuit, Michel & Lefevre, Claude & Utev, Sergey, 2002. "Measuring the impact of dependence between claims occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 1-19, February.
    15. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    16. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    17. Kulik, Rafal & Szekli, Ryszard, 2005. "Dependence orderings for some functionals of multivariate point processes," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 145-173, January.
    18. Damiano Brigo & Kyriakos Chourdakis, 2012. "Consistent single- and multi-step sampling of multivariate arrival times: A characterization of self-chaining copulas," Papers 1204.2090, arXiv.org, revised Apr 2012.
    19. Marta Cardin & Elisa Pagani, 2008. "Some proposals about multivariate risk measurement," Working Papers 165, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    20. Di Bernardino, E. & Fernández-Ponce, J.M. & Palacios-Rodríguez, F. & Rodríguez-Griñolo, M.R., 2015. "On multivariate extensions of the conditional Value-at-Risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 1-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:1118-1127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.