IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v47y2017i02p467-499_00.html
   My bibliography  Save this article

A Neyman-Pearson Perspective On Optimal Reinsurance With Constraints

Author

Listed:
  • Lo, Ambrose

Abstract

The formulation of optimal reinsurance policies that take various practical constraints into account is a problem commonly encountered by practitioners. In the context of a distortion-risk-measure-based optimal reinsurance model without moral hazard, this article introduces and employs a variation of the Neyman–Pearson Lemma in statistical hypothesis testing theory to solve a wide class of constrained optimal reinsurance problems analytically and expeditiously. Such a Neyman–Pearson approach identifies the unit-valued derivative of each ceded loss function as the test function of an appropriate hypothesis test and transforms the problem of designing optimal reinsurance contracts to one that resembles the search of optimal test functions achieved by the classical Neyman–Pearson Lemma. As an illustration of the versatility and superiority of the proposed Neyman–Pearson formulation, we provide complete and transparent solutions of several specific constrained optimal reinsurance problems, many of which were only partially solved in the literature by substantially more difficult means and under extraneous technical assumptions. Examples of such problems include the construction of the optimal reinsurance treaties in the presence of premium budget constraints, counterparty risk constraints and the optimal insurer–reinsurer symbiotic reinsurance treaty considered recently in Cai et al. (2016).

Suggested Citation

  • Lo, Ambrose, 2017. "A Neyman-Pearson Perspective On Optimal Reinsurance With Constraints," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 467-499, May.
  • Handle: RePEc:cup:astinb:v:47:y:2017:i:02:p:467-499_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036116000428/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. David Cummins & Georges Dionne & Robert Gagné & Abdelhakim Nouira, 2021. "The costs and benefits of reinsurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(2), pages 177-199, April.
    2. Chen, Yanhong & Cheung, Ka Chun & Zhang, Yiying, 2024. "Bowley solution under the reinsurer's default risk," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 36-61.
    3. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance with belief heterogeneity," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 79-91.
    4. Ambrose Lo & Zhaofeng Tang, 2019. "Pareto-optimal reinsurance policies in the presence of individual risk constraints," Annals of Operations Research, Springer, vol. 274(1), pages 395-423, March.
    5. Nicole Bäuerle & Alexander Glauner, 2021. "Minimizing spectral risk measures applied to Markov decision processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 35-69, August.
    6. Jiang, Wenjun & Hong, Hanping & Ren, Jiandong, 2021. "Pareto-optimal reinsurance policies with maximal synergy," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 185-198.
    7. Cai, Jun & Liu, Haiyan & Wang, Ruodu, 2017. "Pareto-optimal reinsurance arrangements under general model settings," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 24-37.
    8. Asimit, Alexandru V. & Cheung, Ka Chun & Chong, Wing Fung & Hu, Junlei, 2020. "Pareto-optimal insurance contracts with premium budget and minimum charge constraints," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 17-27.
    9. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    10. Nicole Bauerle & Alexander Glauner, 2020. "Minimizing Spectral Risk Measures Applied to Markov Decision Processes," Papers 2012.04521, arXiv.org.
    11. Birghila, Corina & Pflug, Georg Ch., 2019. "Optimal XL-insurance under Wasserstein-type ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 30-43.
    12. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    13. Khreshna Syuhada & Arief Hakim & Suci Sari, 2021. "The Combined Stop-Loss and Quota-Share Reinsurance: Conditional Tail Expectation-Based Optimization from the Joint Perspective of Insurer and Reinsurer," Risks, MDPI, vol. 9(7), pages 1-21, July.
    14. Alexander Glauner, 2020. "Dynamic Reinsurance in Discrete Time Minimizing the Insurer's Cost of Capital," Papers 2012.09648, arXiv.org.
    15. Albrecher, Hansjörg & Cani, Arian, 2019. "On randomized reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 67-78.
    16. Ghossoub, Mario, 2019. "Optimal insurance under rank-dependent expected utility," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 51-66.
    17. Katia Colaneri & Julia Eisenberg & Benedetta Salterini, 2022. "Some Optimisation Problems in Insurance with a Terminal Distribution Constraint," Papers 2206.04680, arXiv.org.
    18. Boonen, Tim J. & Jiang, Wenjun, 2024. "Robust insurance design with distortion risk measures," European Journal of Operational Research, Elsevier, vol. 316(2), pages 694-706.
    19. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:47:y:2017:i:02:p:467-499_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.