IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v93y2012i2d10.1007_s11192-012-0691-z.html
   My bibliography  Save this article

Hybrid documents co-citation analysis: making sense of the interaction between science and technology in technology diffusion

Author

Listed:
  • Ji-ping Gao

    (Institute of Science Studies and S&T Management and WISE Lab, Dalian University of Technology)

  • Kun Ding

    (Institute of Science Studies and S&T Management and WISE Lab, Dalian University of Technology)

  • Li Teng

    (Institute of Science Studies and S&T Management and WISE Lab, Dalian University of Technology)

  • Jie Pang

    (Institute of Science Studies and S&T Management and WISE Lab, Dalian University of Technology)

Abstract

The paper presents a methodology called hybrid documents co-citation analysis, for studying the interaction between science and technology in technology diffusion. Our approach rests mostly on patent citation, cluster analysis and network analysis. More specifically, with the patents citing Smalley RE in Derwent innovations index as the data sets, the paper implemented hybrid documents co-citation network through two procedures. Then spectrum cluster algorithm was used to reveal the knowledge structure in technology diffusion. After that, with the concordance between network properties and technology diffusion mechanisms, three indicators containing degree, betweenness and citation half-life, were calculated to discuss the basic documents in the pivotal position during the technology diffusion. At last, the paper summarized the hybrid documents co-citation analysis in practise, thus concluded that science and technology undertook different functions and acted dominatingly in the different period of technology diffusion, though they were co-activity all the time.

Suggested Citation

  • Ji-ping Gao & Kun Ding & Li Teng & Jie Pang, 2012. "Hybrid documents co-citation analysis: making sense of the interaction between science and technology in technology diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 459-471, November.
  • Handle: RePEc:spr:scient:v:93:y:2012:i:2:d:10.1007_s11192-012-0691-z
    DOI: 10.1007/s11192-012-0691-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-012-0691-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-012-0691-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    3. Chaomei Chen & Jian Zhang & Michael S. Vogeley, 2010. "Making sense of the evolution of a scientific domain: a visual analytic study of the Sloan Digital Sky Survey research," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 669-688, June.
    4. Sujit Bhattacharya & Hildrun Kretschmer & Martin Meyer, 2003. "Characterizing intellectual spaces between science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 369-390, October.
    5. Stolpe, Michael, 2002. "Determinants of knowledge diffusion as evidenced in patent data: the case of liquid crystal display technology," Research Policy, Elsevier, vol. 31(7), pages 1181-1198, September.
    6. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    7. Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
    8. Hyun Woo Park & Jay Kang, 2009. "Patterns of scientific and technological knowledge flows based on scientific papers and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 811-820, December.
    9. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    10. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    11. M. Meyer & K. Debackere & W. Glänzel, 2010. "Can applied science be ‘good science’? Exploring the relationship between patent citations and citation impact in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(2), pages 527-539, November.
    12. Angela Hullmann & Martin Meyer, 2003. "Publications and patents in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 507-527, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Liu & Qiong Wu & Xiangming Mu & Kaipeng Yu & Yiting Guo, 2015. "Detecting the intellectual structure of library and information science based on formal concept analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 737-762, September.
    2. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    3. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    4. Shuo Xu & Ling Li & Xin An & Liyuan Hao & Guancan Yang, 2021. "An approach for detecting the commonality and specialty between scientific publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7445-7475, September.
    5. Hu, Xiaojun & Rousseau, Ronald, 2018. "A new approach to explore the knowledge transition path in the evolution of science & technology: From the biology of restriction enzymes to their application in biotechnology," Journal of Informetrics, Elsevier, vol. 12(3), pages 842-857.
    6. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    7. Roh, Taeyeoun & Yoon, Byungun, 2023. "Discovering technology and science innovation opportunity based on sentence generation algorithm," Journal of Informetrics, Elsevier, vol. 17(2).
    8. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
    9. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    10. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    11. Yu-Wei Chang, 2014. "Exploring scientific articles contributed by industries in Taiwan," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 599-613, May.
    12. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    2. Jiaxing Jiang & Lin Fan, 2022. "Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis," SAGE Open, , vol. 12(1), pages 21582440211, January.
    3. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    4. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    5. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    6. Mehdi Amirkhani & Igor Martek & Mark B. Luther, 2021. "Mapping Research Trends in Residential Construction Retrofitting: A Scientometric Literature Review," Energies, MDPI, vol. 14(19), pages 1-18, September.
    7. Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
    8. Sung, Hui-Yun & Wang, Chun-Chieh & Huang, Mu-Hsuan & Chen, Dar-Zen, 2015. "Measuring science-based science linkage and non-science-based linkage of patents through non-patent references," Journal of Informetrics, Elsevier, vol. 9(3), pages 488-498.
    9. Boyack, Kevin W. & Klavans, Richard, 2014. "Including cited non-source items in a large-scale map of science: What difference does it make?," Journal of Informetrics, Elsevier, vol. 8(3), pages 569-580.
    10. Heide Fier & Andreas Pyka, 2014. "Against the one-way-street: analyzing knowledge transfer from industry to science," The Journal of Technology Transfer, Springer, vol. 39(2), pages 219-246, April.
    11. Peng Wang & Fang-Wei Zhu & Hao-Yang Song & Jian-Hua Hou & Jin-Lan Zhang, 2018. "Visualizing the Academic Discipline of Knowledge Management," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    12. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    13. Jingwei Zheng & Ke Zhang & Boya Han & Jiayi Hou, 2023. "Research Interdisciplinarity and Citation Impact: A Network Analysis of Social Networking Sites Research," SAGE Open, , vol. 13(3), pages 21582440231, August.
    14. Maximilian Scheffler & Johannes Brunzel, 2020. "Destructive leadership in organizational research: a bibliometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 755-775, October.
    15. Acosta, Manuel & Coronado, Daniel, 2003. "Science-technology flows in Spanish regions: An analysis of scientific citations in patents," Research Policy, Elsevier, vol. 32(10), pages 1783-1803, December.
    16. Qiang Du & Jiajie Zhou, 2022. "Evolution of Low Carbon Supply Chain Research: A Systematic Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
    17. Ren, Yi-Shuai & Ma, Chao-Qun & Chen, Xun-Qi & Lei, Yu-Tian & Wang, Yi-Ran, 2023. "Sustainable finance and blockchain: A systematic review and research agenda," Research in International Business and Finance, Elsevier, vol. 64(C).
    18. Zhang, Sifei & Yuan, Chien-Chung & Chang, Ke-Chiun & Ken, Yun, 2012. "Exploring the nonlinear effects of patent H index, patent citations, and essential technological strength on corporate performance by using artificial neural network," Journal of Informetrics, Elsevier, vol. 6(4), pages 485-495.
    19. Floris Goerlandt & Jie Li & Genserik Reniers, 2021. "The Landscape of Risk Perception Research: A Scientometric Analysis," Sustainability, MDPI, vol. 13(23), pages 1-26, November.
    20. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:93:y:2012:i:2:d:10.1007_s11192-012-0691-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.