IDEAS home Printed from https://ideas.repec.org/a/bla/stratm/v45y2024i9p1670-1695.html
   My bibliography  Save this article

Standing on the shoulders of science

Author

Listed:
  • Joshua L. Krieger
  • Monika Schnitzer
  • Martin Watzinger

Abstract

Research Summary Today's innovations rely on scientific discoveries of the past, yet only some corporate R&D builds directly on scientific output. In this article, we analyze U.S. patents to investigate how firms generate value by building on prior art “closer” to science. We show that patent value is decreasing in distance‐to‐science. Overall, we find a science premium within firms ranging from 5.0 to 18.3%. If we allow for firm sorting into different modes of R&D based on their relative advantage, that is, when we do not control for firm fixed effects, we find an even larger science premium: patents building directly on scientific publications are 4.0–42.3% more valuable than patents in the same technology that are not directly based on science. Managerial Summary Building on scientific research allows firms to capture significantly more value from their inventions. By analyzing U.S. patents and their linkages to scientific publications, our paper describes the relationship between invention “proximity” to the scientific literature and public firm valuations—as measured in abnormal stock market returns. Our findings indicate that patents building on science are 5.0–18.3% more valuable. If we account for variations in R&D strategies among firms, the premium becomes even larger, ranging from 4.0 to 42.3%. Further, the results show that the value‐enhancing benefits of integrating scientific insights into R&D are greater for firms with more experience building on science. Together, the results underscore the competitive advantages of using science as a foundation for corporate innovation.

Suggested Citation

  • Joshua L. Krieger & Monika Schnitzer & Martin Watzinger, 2024. "Standing on the shoulders of science," Strategic Management Journal, Wiley Blackwell, vol. 45(9), pages 1670-1695, September.
  • Handle: RePEc:bla:stratm:v:45:y:2024:i:9:p:1670-1695
    DOI: 10.1002/smj.3598
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/smj.3598
    Download Restriction: no

    File URL: https://libkey.io/10.1002/smj.3598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ewens, Michael & Nanda, Ramana & Rhodes-Kropf, Matthew, 2018. "Cost of experimentation and the evolution of venture capital," Journal of Financial Economics, Elsevier, vol. 128(3), pages 422-442.
    2. Bryan Kelly & Dimitris Papanikolaou & Amit Seru & Matt Taddy, 2021. "Measuring Technological Innovation over the Long Run," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 303-320, September.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    5. Nicholas Bloom & Paul M. Romer & Stephen J. Terry & John Van Reenen, 2013. "A Trapped-Factors Model of Innovation," American Economic Review, American Economic Association, vol. 103(3), pages 208-213, May.
    6. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    7. Leonid Kogan & Dimitris Papanikolaou & Amit Seru & Noah Stoffman, 2017. "Technological Innovation, Resource Allocation, and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 665-712.
    8. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    9. Ashish Arora & Andrea Fosfuri & Alfonso Gambardella, 2004. "Markets for Technology: The Economics of Innovation and Corporate Strategy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262511819, December.
    10. Sorenson, Olav & Fleming, Lee, 2004. "Science and the diffusion of knowledge," Research Policy, Elsevier, vol. 33(10), pages 1615-1634, December.
    11. Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2018. "Text matching to measure patent similarity," Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 62-84, January.
    12. Magerman, Tom & Looy, Bart Van & Debackere, Koenraad, 2015. "Does involvement in patenting jeopardize one’s academic footprint? An analysis of patent-paper pairs in biotechnology," Research Policy, Elsevier, vol. 44(9), pages 1702-1713.
    13. Scott Stern, 2004. "Do Scientists Pay to Be Scientists?," Management Science, INFORMS, vol. 50(6), pages 835-853, June.
    14. Uri Simonsohn & Joseph P. Simmons & Leif D. Nelson, 2020. "Specification curve analysis," Nature Human Behaviour, Nature, vol. 4(11), pages 1208-1214, November.
    15. Rebecca Henderson & Iain Cockburn, 1994. "Measuring Competence? Exploring Firm Effects in Pharmaceutical Research," Strategic Management Journal, Wiley Blackwell, vol. 15(S1), pages 63-84, December.
    16. Scott Shane, 2001. "Technological Opportunities and New Firm Creation," Management Science, INFORMS, vol. 47(2), pages 205-220, February.
    17. Pierre Régibeau & Katharine Rockett, 2010. "Innovation Cycles And Learning At The Patent Office: Does The Early Patent Get The Delay?," Journal of Industrial Economics, Wiley Blackwell, vol. 58(2), pages 222-246, June.
    18. Alessandro Iaria & Carlo Schwarz & Fabian Waldinger, 2018. "Frontier Knowledge and Scientific Production: Evidence from the Collapse of International Science," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 927-991.
    19. Uri Simonsohn & Joseph P. Simmons & Leif D. Nelson, 2020. "Publisher Correction: Specification curve analysis," Nature Human Behaviour, Nature, vol. 4(11), pages 1215-1215, November.
    20. Iain M. Cockburn & Rebecca M. Henderson, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    21. Gans, Joshua S. & Stern, Scott, 2003. "The product market and the market for "ideas": commercialization strategies for technology entrepreneurs," Research Policy, Elsevier, vol. 32(2), pages 333-350, February.
    22. Tat Chan & Jack A. Nickerson & Hideo Owan, 2007. "Strategic Management of R& D Pipelines with Cospecialized Investments and Technology Markets," Management Science, INFORMS, vol. 53(4), pages 667-682, April.
    23. Mansfield, Edwin, 1998. "Academic research and industrial innovation: An update of empirical findings1," Research Policy, Elsevier, vol. 26(7-8), pages 773-776, April.
    24. Michaël Bikard & Matt Marx, 2020. "Bridging Academia and Industry: How Geographic Hubs Connect University Science and Corporate Technology," Management Science, INFORMS, vol. 66(8), pages 3425-3443, August.
    25. Iain M. Cockburn & Rebecca M. Henderson & Scott Stern, 2000. "Untangling the origins of competitive advantage," Strategic Management Journal, Wiley Blackwell, vol. 21(10‐11), pages 1123-1145, October.
    26. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    27. Fiona E. Murray & Scott Stern, 2007. "Do Formal Intellectual Property Rights Hinder the Free Flow of Scientific Knowledge?: An Empirical Test of the Anti-Commons Hypothesis," NBER Chapters, in: Academic Science and Entrepreneurship: Dual Engines of Growth, National Bureau of Economic Research, Inc.
    28. Jeffrey Kuhn & Kenneth Younge & Alan Marco, 2020. "Patent citations reexamined," RAND Journal of Economics, RAND Corporation, vol. 51(1), pages 109-132, March.
    29. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    30. Dietmar Harhoff & Stefan Wagner, 2009. "The Duration of Patent Examination at the European Patent Office," Management Science, INFORMS, vol. 55(12), pages 1969-1984, December.
    31. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    32. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.
    33. Ajay Bhaskarabhatla & Deepak Hegde, 2014. "An Organizational Perspective on Patenting and Open Innovation," Organization Science, INFORMS, vol. 25(6), pages 1744-1763, December.
    34. Mariagrazia Squicciarini & Hélène Dernis & Chiara Criscuolo, 2013. "Measuring Patent Quality: Indicators of Technological and Economic Value," OECD Science, Technology and Industry Working Papers 2013/3, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watzinger, Martin & Schnitzer, Monika, 2019. "Standing on the Shoulders of Science," Rationality and Competition Discussion Paper Series 215, CRC TRR 190 Rationality and Competition.
    2. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    3. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    4. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    5. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    6. Jong, Simcha & Slavova, Kremena, 2014. "When publications lead to products: The open science conundrum in new product development," Research Policy, Elsevier, vol. 43(4), pages 645-654.
    7. Sheer, Lia, 2022. "Sitting on the Fence: Integrating the two worlds of scientific discovery and invention within the firm," Research Policy, Elsevier, vol. 51(7).
    8. Nagar, Jay Prakash & Breschi, Stefano & Fosfuri, Andrea, 2024. "ERC science and invention: Does ERC break free from the EU Paradox?," Research Policy, Elsevier, vol. 53(8).
    9. Fabrizio, Kira R., 2009. "Absorptive capacity and the search for innovation," Research Policy, Elsevier, vol. 38(2), pages 255-267, March.
    10. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    11. Basse Mama, Houdou, 2018. "Nonlinear capital market payoffs to science-led innovation," Research Policy, Elsevier, vol. 47(6), pages 1084-1095.
    12. Foray, Dominique & Lissoni, Francesco, 2010. "University Research and Public–Private Interaction," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 275-314, Elsevier.
    13. Subramanian, Annapoornima M. & Lim, Kwanghui & Soh, Pek-Hooi, 2013. "When birds of a feather don’t flock together: Different scientists and the roles they play in biotech R&D alliances," Research Policy, Elsevier, vol. 42(3), pages 595-612.
    14. Bryan, Kevin A. & Ozcan, Yasin & Sampat, Bhaven, 2020. "In-text patent citations: A user's guide," Research Policy, Elsevier, vol. 49(4).
    15. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    16. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    17. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012. "The nexus between science and industry: evidence from faculty inventions," The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
    18. Veugelers, Reinhilde & Cassiman, Bruno & Arts, Sam, 2012. "Mind the gap: capturing value from basic research: boundary crossing inventors and partnerships," CEPR Discussion Papers 9215, C.E.P.R. Discussion Papers.
    19. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    20. Arora, Ashish & Belenzon, Sharon & Dionisi, Bernardo, 2023. "First-mover advantage and the private value of public science," Research Policy, Elsevier, vol. 52(9).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stratm:v:45:y:2024:i:9:p:1670-1695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0143-2095 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.