IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i2s1751157724000373.html
   My bibliography  Save this article

A complement to the novel disruption indicator based on knowledge entities

Author

Listed:
  • Tong, Tong
  • Wang, Wanru
  • Ye, Fred Y.

Abstract

Following the proposal of disruption index (DI) for detecting scientific breakthroughs based on citation patterns, a recently introduced knowledge entity-based disruption (ED) index incorporates both citation patterns and knowledge elements. In this study, we investigate the applications and limitations of the ED series indicators by employing two datasets from different fields within the Web of Science database, providing some insights that complement the use of ED series indicators. For the genome editing dataset, we validate the consistency across the ED series indicators based on different knowledge entities, specifically MeSH terms and KeyWords Plus. In the case of the h-set dataset, where no MeSH terms were matched, our focus is on comparing the performance of the ED series indicators based on KeyWords Plus with other representative disruption indicators in small datasets. When considering the two datasets of the “stem” and “seed” papers obtained by the seed algorithm as reference objects and calculating their DI and ED series indicators, the results indicate that the values of DI series indicators of “seed” papers exhibit higher values compared to the ED series indicators. From a statistics perspective, there are no significant differences in the ED series indicators when employing different knowledge entities, despite variations in their rankings. Based on the results and discussions of this study, we provide guidance on application of ED series indicators and potential refinements in subsequent studies.

Suggested Citation

  • Tong, Tong & Wang, Wanru & Ye, Fred Y., 2024. "A complement to the novel disruption indicator based on knowledge entities," Journal of Informetrics, Elsevier, vol. 18(2).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:2:s1751157724000373
    DOI: 10.1016/j.joi.2024.101524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    2. Zhao, Star X. & Rousseau, Ronald & Ye, Fred Y., 2011. "h-Degree as a basic measure in weighted networks," Journal of Informetrics, Elsevier, vol. 5(4), pages 668-677.
    3. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    4. Lu Xiao & Guo Chen & Jianjun Sun & Shuguang Han & Chengzhi Zhang, 2016. "Exploring the topic hierarchy of digital library research in China using keyword networks: a K-core decomposition approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1085-1101, September.
    5. Shiyun Wang & Yaxue Ma & Jin Mao & Yun Bai & Zhentao Liang & Gang Li, 2023. "Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 150-167, February.
    6. Michael Park & Erin Leahey & Russell J. Funk, 2023. "Papers and patents are becoming less disruptive over time," Nature, Nature, vol. 613(7942), pages 138-144, January.
    7. Star X. Zhao & Paul L. Zhang & Jiang Li & Alice M. Tan & Fred Y. Ye, 2014. "Abstracting the core subnet of weighted networks based on link strengths," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 984-994, May.
    8. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    9. Lu, Wei & Liu, Zhifeng & Huang, Yong & Bu, Yi & Li, Xin & Cheng, Qikai, 2020. "How do authors select keywords? A preliminary study of author keyword selection behavior," Journal of Informetrics, Elsevier, vol. 14(4).
    10. Giorgia Bondanini & Gabriele Giorgi & Antonio Ariza-Montes & Alejandro Vega-Muñoz & Paola Andreucci-Annunziata, 2020. "Technostress Dark Side of Technology in the Workplace: A Scientometric Analysis," IJERPH, MDPI, vol. 17(21), pages 1-23, October.
    11. Xiaofeng Cao & Yi Huang & Jie Wang & Shengji Luan, 2012. "Research status and trends in limnology journals: a bibliometric analysis based on SCI database," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 735-746, September.
    12. Tibor Braun & Wolfgang Glänzel & András Schubert, 2006. "A Hirsch-type index for journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 169-173, October.
    13. Keeheon Lee & SuYeon Kim & Erin Hea-Jin Kim & Min Song, 2017. "Comparative evaluation of bibliometric content networks by tomographic content analysis: An application to Parkinson's disease," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(5), pages 1295-1307, May.
    14. Leydesdorff, Loet & Bornmann, Lutz, 2021. "Disruption indices and their calculation using web-of-science data: Indicators of historical developments or evolutionary dynamics?," Journal of Informetrics, Elsevier, vol. 15(4).
    15. Stefano Mizzaro, 1997. "Relevance: The whole history," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(9), pages 810-832, September.
    16. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    17. Jean J. Wang & Sarah X. Shao & Fred Y. Ye, 2021. "Identifying 'seed' papers in sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6001-6011, July.
    18. Junwen Zhu & Weishu Liu, 2020. "A tale of two databases: the use of Web of Science and Scopus in academic papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 321-335, April.
    19. Pan, Xuelian & Yan, Erjia & Wang, Qianqian & Hua, Weina, 2015. "Assessing the impact of software on science: A bootstrapped learning of software entities in full-text papers," Journal of Informetrics, Elsevier, vol. 9(4), pages 860-871.
    20. Chen, Dar-zen & Huang, Mu-hsuan & Ye, Fred Y., 2013. "A probe into dynamic measures for h-core and h-tail," Journal of Informetrics, Elsevier, vol. 7(1), pages 129-137.
    21. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    22. Bornmann, Lutz & Tekles, Alexander, 2021. "Convergent validity of several indicators measuring disruptiveness with milestone assignments to physics papers by experts," Journal of Informetrics, Elsevier, vol. 15(3).
    23. John E. Ettlie & William P. Bridges & Robert D. O'Keefe, 1984. "Organization Strategy and Structural Differences for Radical Versus Incremental Innovation," Management Science, INFORMS, vol. 30(6), pages 682-695, June.
    24. Yu-Chiung Lou & Hsiao-Fang Lin, 2012. "Estimate of global research trends and performance in family therapy in Social Science Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 807-823, March.
    25. András Schubert & András Korn & András Telcs, 2009. "Hirsch-type indices for characterizing networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(2), pages 375-382, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean J. Wang & Sarah X. Shao & Fred Y. Ye, 2021. "Identifying 'seed' papers in sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6001-6011, July.
    2. Yang, Alex Jie & Wu, Linwei & Zhang, Qi & Wang, Hao & Deng, Sanhong, 2023. "The k-step h-index in citation networks at the paper, author, and institution levels," Journal of Informetrics, Elsevier, vol. 17(4).
    3. Yuyan Jiang & Xueli Liu, 2023. "A construction and empirical research of the journal disruption index based on open citation data," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 3935-3958, July.
    4. Wei, Shelia X. & Tong, Tong & Rousseau, Ronald & Wang, Wanru & Ye, Fred Y., 2022. "Relations among the h-, g-, ψ-, and p-index and offset-ability," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.
    6. Zhang, Ming-Ze & Wang, Tang-Rong & Lyu, Peng-Hui & Chen, Qi-Mei & Li, Ze-Xia & Ngai, Eric W.T., 2024. "Impact of gender composition of academic teams on disruptive output," Journal of Informetrics, Elsevier, vol. 18(2).
    7. Yuefen Wang & Lipeng Fan & Lei Wu, 2024. "A validation test of the Uzzi et al. novelty measure of innovation and applications to collaboration patterns between institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4379-4394, July.
    8. Bornmann, Lutz & Tekles, Alexander, 2021. "Convergent validity of several indicators measuring disruptiveness with milestone assignments to physics papers by experts," Journal of Informetrics, Elsevier, vol. 15(3).
    9. Dong, Ke & Wu, Jiang & Wang, Kaili, 2021. "On the inequality of citation counts of all publications of individual authors," Journal of Informetrics, Elsevier, vol. 15(4).
    10. Rousseau, Ronald & Zhao, Star X., 2015. "A general conceptual framework for characterizing the ego in a network," Journal of Informetrics, Elsevier, vol. 9(1), pages 145-149.
    11. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    12. Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
    13. Sam Arts & Nicola Melluso & Reinhilde Veugelers, 2023. "Beyond Citations: Measuring Novel Scientific Ideas and their Impact in Publication Text," Papers 2309.16437, arXiv.org, revised Dec 2024.
    14. Parul Khurana & Kiran Sharma, 2022. "Impact of h-index on author’s rankings: an improvement to the h-index for lower-ranked authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4483-4498, August.
    15. Judit Bar-Ilan & Mark Levene, 2015. "The hw-rank: an h-index variant for ranking web pages," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2247-2253, March.
    16. Zhentao Liang & Jin Mao & Gang Li, 2023. "Bias against scientific novelty: A prepublication perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 99-114, January.
    17. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    18. Leydesdorff, Loet & Bornmann, Lutz, 2021. "Disruption indices and their calculation using web-of-science data: Indicators of historical developments or evolutionary dynamics?," Journal of Informetrics, Elsevier, vol. 15(4).
    19. Basma Albanna & Julia Handl & Richard Heeks, 2021. "Publication outperformance among global South researchers: An analysis of individual-level and publication-level predictors of positive deviance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8375-8431, October.
    20. Wang, Cheng-Jun & Yan, Lihan & Cui, Haochuan, 2023. "Unpacking the essential tension of knowledge recombination: Analyzing the impact of knowledge spanning on citation impact and disruptive innovation," Journal of Informetrics, Elsevier, vol. 17(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:2:s1751157724000373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.