IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v108y2016i3d10.1007_s11192-016-2051-x.html
   My bibliography  Save this article

Exploring the topic hierarchy of digital library research in China using keyword networks: a K-core decomposition approach

Author

Listed:
  • Lu Xiao

    (Nanjing University)

  • Guo Chen

    (Nanjing University of Science and Technology)

  • Jianjun Sun

    (Nanjing University)

  • Shuguang Han

    (University of Pittsburgh)

  • Chengzhi Zhang

    (Nanjing University of Science and Technology)

Abstract

Exploring the topic hierarchy of a research field can help us better recognize its intellectual structure. This paper proposes a new method to automatically discover the topic hierarchy, in which the keyword network is constructed to represent topics and their relations, and then decomposed hierarchically into shells using the K-core decomposition method. Adjacent shells with similar morphology are merged into layers according to their density and clustering coefficient. In the keyword network of the digital library field in China, we discover four different layers. The basic layer contains 17 tightly-interconnected core concepts which form the knowledge base of the field. The middle layer contains 13 mediator concepts which are directly connected to technology concepts in the basic layer, showing the knowledge evolution of the field. The detail layer contains 65 concrete concepts which can be grouped into 13 clusters, indicating the research specializations of the field. The marginal layer contains peripheral or isolated concepts.

Suggested Citation

  • Lu Xiao & Guo Chen & Jianjun Sun & Shuguang Han & Chengzhi Zhang, 2016. "Exploring the topic hierarchy of digital library research in China using keyword networks: a K-core decomposition approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1085-1101, September.
  • Handle: RePEc:spr:scient:v:108:y:2016:i:3:d:10.1007_s11192-016-2051-x
    DOI: 10.1007/s11192-016-2051-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-2051-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-2051-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Son Hoang Nguyen & Gobinda Chowdhury, 2013. "Interpreting the knowledge map of digital library research (1990–2010)," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(6), pages 1235-1258, June.
    2. Chen, Guo & Xiao, Lu, 2016. "Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods," Journal of Informetrics, Elsevier, vol. 10(1), pages 212-223.
    3. Verspagen, Bart & Werker, Claudia, 2004. "Keith Pavitt and the Invisible College of the Economics of Technology and Innovation," Research Policy, Elsevier, vol. 33(9), pages 1419-1431, November.
    4. Star X. Zhao & Paul L. Zhang & Jiang Li & Alice M. Tan & Fred Y. Ye, 2014. "Abstracting the core subnet of weighted networks based on link strengths," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 984-994, May.
    5. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    6. Sangyoon Yi & Jinho Choi, 2012. "The organization of scientific knowledge: the structural characteristics of keyword networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 1015-1026, March.
    7. Gao-Yong Liu & Ji-Ming Hu & Hui-Ling Wang, 2012. "A co-word analysis of digital library field in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 203-217, April.
    8. Limei Zhao & Qingpu Zhang, 2011. "Mapping knowledge domains of Chinese digital library research output, 1994–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 51-87, October.
    9. Pei-Chun Lee & Hsin-Ning Su & Te-Yi Chan, 2010. "Assessment of ontology-based knowledge network formation by Vector-Space Model," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 689-703, December.
    10. Son Hoang Nguyen & Gobinda Chowdhury, 2013. "Interpreting the knowledge map of digital library research (1990–2010)," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(6), pages 1235-1258, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Tong & Wang, Wanru & Ye, Fred Y., 2024. "A complement to the novel disruption indicator based on knowledge entities," Journal of Informetrics, Elsevier, vol. 18(2).
    2. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    3. Jean J. Wang & Sarah X. Shao & Fred Y. Ye, 2021. "Identifying 'seed' papers in sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6001-6011, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qing & Zhang, Huaige & Hong, Xianpei, 2020. "Knowledge structure of technology licensing based on co-keywords network: A review and future directions," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 154-165.
    2. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    3. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    4. Behrouzi, Saman & Shafaeipour Sarmoor, Zahra & Hajsadeghi, Khosrow & Kavousi, Kaveh, 2020. "Predicting scientific research trends based on link prediction in keyword networks," Journal of Informetrics, Elsevier, vol. 14(4).
    5. Anke Piepenbrink & Elkin Nurmammadov, 2015. "Topics in the literature of transition economies and emerging markets," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2107-2130, March.
    6. Qikai Cheng & Jiamin Wang & Wei Lu & Yong Huang & Yi Bu, 2020. "Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1923-1943, September.
    7. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    8. Lin Zhu & Xiantao Liu & Sha He & Jun Shi & Ming Pang, 2015. "Keywords co-occurrence mapping knowledge domain research base on the theory of Big Data in oil and gas industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 249-260, October.
    9. Yao Hongxing & Lu Yunxia, 2017. "Analyzing the Potential Influence of Shanghai Stock Market Based on Link Prediction Method," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 446-461, October.
    10. Kai Hu & Huayi Wu & Kunlun Qi & Jingmin Yu & Siluo Yang & Tianxing Yu & Jie Zheng & Bo Liu, 2018. "A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1031-1068, March.
    11. Mikel Alayo & Txomin Iturralde & Amaia Maseda & Gloria Aparicio, 2021. "Mapping family firm internationalization research: bibliometric and literature review," Review of Managerial Science, Springer, vol. 15(6), pages 1517-1560, August.
    12. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    13. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    14. Chang-Ping Hu & Ji-Ming Hu & Sheng-Li Deng & Yong Liu, 2013. "A co-word analysis of library and information science in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 369-382, November.
    15. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    16. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    17. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    18. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    19. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    20. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:108:y:2016:i:3:d:10.1007_s11192-016-2051-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.