IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v9y2015i1p145-149.html
   My bibliography  Save this article

A general conceptual framework for characterizing the ego in a network

Author

Listed:
  • Rousseau, Ronald
  • Zhao, Star X.

Abstract

In this contribution we consider one particular node in a network, referred to as the ego. We combine Zipf lists and ego measures to put forward a conceptual framework for characterizing this particular node. In this framework we unify different forms of h-indices, in particular the h-degree, introduced in the literature. Similarly, different forms of the g-index, the a-index and the R-index are unified. We focus on the pure mathematical and logical concepts, referring to the existing literature for practical examples.

Suggested Citation

  • Rousseau, Ronald & Zhao, Star X., 2015. "A general conceptual framework for characterizing the ego in a network," Journal of Informetrics, Elsevier, vol. 9(1), pages 145-149.
  • Handle: RePEc:eee:infome:v:9:y:2015:i:1:p:145-149
    DOI: 10.1016/j.joi.2014.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S175115771400114X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2014.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schubert, András, 2012. "Jazz discometrics – A network approach," Journal of Informetrics, Elsevier, vol. 6(4), pages 480-484.
    2. Zhao, Star X. & Rousseau, Ronald & Ye, Fred Y., 2011. "h-Degree as a basic measure in weighted networks," Journal of Informetrics, Elsevier, vol. 5(4), pages 668-677.
    3. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    4. Yan, Xiangbin & Zhai, Li & Fan, Weiguo, 2013. "C-index: A weighted network node centrality measure for collaboration competence," Journal of Informetrics, Elsevier, vol. 7(1), pages 223-239.
    5. Li Zhai & Xiangbin Yan & Bin Zhu, 2014. "The H l -index: improvement of H-index based on quality of citing papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1021-1031, February.
    6. Zhao, Star X. & Ye, Fred Y., 2012. "Exploring the directed h-degree in directed weighted networks," Journal of Informetrics, Elsevier, vol. 6(4), pages 619-630.
    7. Star X. Zhao & Paul L. Zhang & Jiang Li & Alice M. Tan & Fred Y. Ye, 2014. "Abstracting the core subnet of weighted networks based on link strengths," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 984-994, May.
    8. András Schubert, 2012. "A Hirsch-type index of co-author partnership ability," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 303-308, April.
    9. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    10. Schubert, András & Glänzel, Wolfgang, 2007. "A systematic analysis of Hirsch-type indices for journals," Journal of Informetrics, Elsevier, vol. 1(3), pages 179-184.
    11. Korn, A. & Schubert, A. & Telcs, A., 2009. "Lobby index in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2221-2226.
    12. Alireza Abbasi, 2013. "h-Type hybrid centrality measures for weighted networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 633-640, August.
    13. András Schubert & András Korn & András Telcs, 2009. "Hirsch-type indices for characterizing networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(2), pages 375-382, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hildrun Kretschmer & Donald Beaver & Theo Kretschmer, 2015. "Three-dimensional visualization and animation of emerging patterns by the process of self-organization in collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 87-120, July.
    2. Zhao, Star X. & Tan, Alice M. & Yu, Shuang & Xu, Xin, 2018. "Analyzing the research funding in physics: The perspective of production and collaboration at institution level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 662-674.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xiangbin & Zhai, Li & Fan, Weiguo, 2013. "C-index: A weighted network node centrality measure for collaboration competence," Journal of Informetrics, Elsevier, vol. 7(1), pages 223-239.
    2. Zhai, Li & Yan, Xiangbin & Zhang, Guojing, 2018. "Bi-directional h-index: A new measure of node centrality in weighted and directed networks," Journal of Informetrics, Elsevier, vol. 12(1), pages 299-314.
    3. Li Zhai & Xiangbin Yan & Bin Zhu, 2014. "The H l -index: improvement of H-index based on quality of citing papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1021-1031, February.
    4. Wei, Shelia X. & Tong, Tong & Rousseau, Ronald & Wang, Wanru & Ye, Fred Y., 2022. "Relations among the h-, g-, ψ-, and p-index and offset-ability," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Wang, Ruby W. & Wei, Shelia X. & Ye, Fred Y., 2021. "Extracting a core structure from heterogeneous information network using h-subnet and meta-path strength," Journal of Informetrics, Elsevier, vol. 15(3).
    6. Alireza Abbasi, 2013. "h-Type hybrid centrality measures for weighted networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 633-640, August.
    7. András Schubert, 2015. "X-centage: a Hirsch-inspired indicator for distributions of percentage-valued variables and its use for measuring heterodisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 307-313, January.
    8. Judit Bar-Ilan & Mark Levene, 2015. "The hw-rank: an h-index variant for ranking web pages," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2247-2253, March.
    9. Zhao, Star X. & Tan, Alice M. & Yu, Shuang & Xu, Xin, 2018. "Analyzing the research funding in physics: The perspective of production and collaboration at institution level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 662-674.
    10. Zhao, Star X. & Ye, Fred Y., 2012. "Exploring the directed h-degree in directed weighted networks," Journal of Informetrics, Elsevier, vol. 6(4), pages 619-630.
    11. Tong, Tong & Wang, Wanru & Ye, Fred Y., 2024. "A complement to the novel disruption indicator based on knowledge entities," Journal of Informetrics, Elsevier, vol. 18(2).
    12. Guillaume Cabanac, 2013. "Experimenting with the partnership ability φ-index on a million computer scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 1-9, July.
    13. Lucio Bertoli-Barsotti & Tommaso Lando, 2017. "A theoretical model of the relationship between the h-index and other simple citation indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1415-1448, June.
    14. Zhai, Li & Yan, Xiangbin & Zhang, Guojing, 2013. "A centrality measure for communication ability in weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6107-6117.
    15. R. G. Raj & A. N. Zainab, 2012. "Relative measure index: a metric to measure the quality of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 305-317, November.
    16. Jean J. Wang & Sarah X. Shao & Fred Y. Ye, 2021. "Identifying 'seed' papers in sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6001-6011, July.
    17. Zhao, Star X. & Rousseau, Ronald & Ye, Fred Y., 2011. "h-Degree as a basic measure in weighted networks," Journal of Informetrics, Elsevier, vol. 5(4), pages 668-677.
    18. András Schubert, 2015. "Rescaling the h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1647-1653, February.
    19. Zhang, Ronda J. & Ye, Fred Y., 2020. "Measuring similarity for clarifying layer difference in multiplex ad hoc duplex information networks," Journal of Informetrics, Elsevier, vol. 14(1).
    20. Li Zhai & Xiujuan Li & Xiangbin Yan & Weiguo Fan, 2014. "Evolutionary analysis of collaboration networks in the field of information systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1657-1677, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:9:y:2015:i:1:p:145-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.