Finding a representative subset from large-scale documents
Author
Abstract
Suggested Citation
DOI: 10.1016/j.joi.2016.05.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2007. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Working Papers 07-36, NET Institute.
- Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
- Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
- Chen, Dar-Zen & Huang, Mu-Hsuan & Hsieh, Hui-Chen & Lin, Chang-Pin, 2011. "Identifying missing relevant patent citation links by using bibliographic coupling in LED illuminating technology," Journal of Informetrics, Elsevier, vol. 5(3), pages 400-412.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bin Guo & Shasha Zhou, 2017. "What makes population perception of review helpfulness: an information processing perspective," Electronic Commerce Research, Springer, vol. 17(4), pages 585-608, December.
- Zhuolan Bao & Wenwen Li & Pengzhen Yin & Michael Chau, 2021. "Examining the impact of review tag function on product evaluation and information perception of popular products," Information Systems and e-Business Management, Springer, vol. 19(2), pages 517-539, June.
- Yi-Fen Chen & Shi-Han Chang, 2016. "The online framing effect: the moderating role of warning, brand familiarity, and product type," Electronic Commerce Research, Springer, vol. 16(3), pages 355-374, September.
- Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018.
"Aggregation of consumer ratings: an application to Yelp.com,"
Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.
- Weijia Dai & Ginger Z. Jin & Jungmin Lee & Michael Luca, 2012. "Aggregation of Consumer Ratings: An Application to Yelp.com," NBER Working Papers 18567, National Bureau of Economic Research, Inc.
- Weijia Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2012. "Aggregation of Consumer Ratings: An Application to Yelp.com," Harvard Business School Working Papers 13-042, Harvard Business School, revised Nov 2017.
- Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
- King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
- Yili Hong & Pei-yu Chen & Lorin Hitt, 2014. "Measuring Product Type with Dynamics of Online Product Review Variances: A Theoretical Model and the Empirical Applications," Working Papers 14-03, NET Institute.
- Philipp Herrmann, 2014. "The impact of the variance of online consumer ratings on pricing and demand – An analytical model," Working Papers Dissertations 07, Paderborn University, Faculty of Business Administration and Economics.
- Warut Khern-am-nuai & Karthik Kannan & Hossein Ghasemkhani, 2018. "Extrinsic versus Intrinsic Rewards for Contributing Reviews in an Online Platform," Information Systems Research, INFORMS, vol. 29(4), pages 871-892, December.
- Yue Ma & Guoqing Chen & Qiang Wei, 2017. "Finding users preferences from large-scale online reviews for personalized recommendation," Electronic Commerce Research, Springer, vol. 17(1), pages 3-29, March.
- Kun Chen & Peng Luo & Huaiqing Wang, 2017. "Investigating transitive influences on WOM: from the product network perspective," Electronic Commerce Research, Springer, vol. 17(1), pages 149-167, March.
- Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers Dissertations 13, Paderborn University, Faculty of Business Administration and Economics.
- Li, Yiming & Li, Gang & Tayi, Giri Kumar & Cheng, T.C.E., 2019. "Omni-channel retailing: Do offline retailers benefit from online reviews?," International Journal of Production Economics, Elsevier, vol. 218(C), pages 43-61.
- Lorenz Graf-Vlachy & Tarun Goyal & Yannick Ouardi & Andreas König, 2021. "Reviews Left and Right: The Link Between Reviewers’ Political Ideology and Online Review Language," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 403-417, August.
- Konstantin Bauman & Alexander Tuzhilin, 2022. "Know Thy Context: Parsing Contextual Information from User Reviews for Recommendation Purposes," Information Systems Research, INFORMS, vol. 33(1), pages 179-202, March.
- Joe Cox & Daniel Kaimann, 2013. "The Signaling Effect of Critics - Evidence from a Market for Experience Goods," Working Papers CIE 68, Paderborn University, CIE Center for International Economics.
- Chung-Yi Lin & Shu-Yi Liaw & Chao-Chun Chen & Mao-Yuan Pai & Yuh-Min Chen, 2017. "A computer-based approach for analyzing consumer demands in electronic word-of-mouth," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(3), pages 225-242, August.
- Yabing Jiang & Hong Guo, 2012. "Design of Consumer Review Systems and Product Pricing," Working Papers 12-10, NET Institute.
- Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
- Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
More about this item
Keywords
Information extraction method; Coverage; Redundancy; Distribution consistency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:10:y:2016:i:3:p:762-775. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.