IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v10y2016i3p762-775.html
   My bibliography  Save this article

Finding a representative subset from large-scale documents

Author

Listed:
  • Zhang, Jin
  • Liu, Guannan
  • Ren, Ming

Abstract

Large-scale information, especially in the form of documents, is potentially useful for decision-making but intensifies the information overload problem. To cope with this problem, this paper proposes a method named RepExtract to extract a representative subset from large-scale documents. The extracted representative subset possesses three desirable features: high coverage of the content of the original document set, low redundancy within the extracted subset, and consistent distribution with the original set. Extensive experiments were conducted on benchmark datasets, demonstrating the superiority of RepExtract over the benchmark methods in terms of the three features above. A user study was also conducted by collecting human evaluations of different methods, and the results indicate that users can gain an understanding of large-scale documents precisely and efficiently through a representative subset extracted by the proposed method.

Suggested Citation

  • Zhang, Jin & Liu, Guannan & Ren, Ming, 2016. "Finding a representative subset from large-scale documents," Journal of Informetrics, Elsevier, vol. 10(3), pages 762-775.
  • Handle: RePEc:eee:infome:v:10:y:2016:i:3:p:762-775
    DOI: 10.1016/j.joi.2016.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157716300566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2016.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2007. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Working Papers 07-36, NET Institute.
    2. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    3. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    4. Chen, Dar-Zen & Huang, Mu-Hsuan & Hsieh, Hui-Chen & Lin, Chang-Pin, 2011. "Identifying missing relevant patent citation links by using bibliographic coupling in LED illuminating technology," Journal of Informetrics, Elsevier, vol. 5(3), pages 400-412.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Guo & Shasha Zhou, 2017. "What makes population perception of review helpfulness: an information processing perspective," Electronic Commerce Research, Springer, vol. 17(4), pages 585-608, December.
    2. Joe Cox & Daniel Kaimann, 2013. "The Signaling Effect of Critics - Evidence from a Market for Experience Goods," Working Papers CIE 68, Paderborn University, CIE Center for International Economics.
    3. Chung-Yi Lin & Shu-Yi Liaw & Chao-Chun Chen & Mao-Yuan Pai & Yuh-Min Chen, 2017. "A computer-based approach for analyzing consumer demands in electronic word-of-mouth," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(3), pages 225-242, August.
    4. Yabing Jiang & Hong Guo, 2012. "Design of Consumer Review Systems and Product Pricing," Working Papers 12-10, NET Institute.
    5. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    6. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    7. Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018. "Aggregation of consumer ratings: an application to Yelp.com," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.
    8. Zhuolan Bao & Wenwen Li & Pengzhen Yin & Michael Chau, 2021. "Examining the impact of review tag function on product evaluation and information perception of popular products," Information Systems and e-Business Management, Springer, vol. 19(2), pages 517-539, June.
    9. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    10. Yi-Fen Chen & Shi-Han Chang, 2016. "The online framing effect: the moderating role of warning, brand familiarity, and product type," Electronic Commerce Research, Springer, vol. 16(3), pages 355-374, September.
    11. Sangjae Lee & Joon Yeon Choeh, 2020. "Using the Social Influence of Electronic Word-of-Mouth for Predicting Product Sales: The Moderating Effect of Review or Reviewer Helpfulness and Product Type," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    12. Akshay Kangale & S. Krishna Kumar & Mohd Arshad Naeem & Mark Williams & M. K. Tiwari, 2016. "Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3272-3286, October.
    13. Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
    14. Daniel Kaimann, 2014. "Combining Qualitative Comparative Analysis and Shapley Value Decomposition: A Novel Approach for Modeling Complex Causal Structures in Dynamic Markets," Working Papers Dissertations 12, Paderborn University, Faculty of Business Administration and Economics.
    15. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    16. Yili Hong & Pei-yu Chen & Lorin Hitt, 2014. "Measuring Product Type with Dynamics of Online Product Review Variances: A Theoretical Model and the Empirical Applications," Working Papers 14-03, NET Institute.
    17. Philipp Herrmann, 2014. "The impact of the variance of online consumer ratings on pricing and demand – An analytical model," Working Papers Dissertations 07, Paderborn University, Faculty of Business Administration and Economics.
    18. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2013. "Platform or Wholesale? Different Implications for Retailers of Online Product," Working Papers 13-14, NET Institute.
    19. Li, Dong & Nagurney, Anna & Yu, Min, 2018. "Consumer learning of product quality with time delay: Insights from spatial price equilibrium models with differentiated products," Omega, Elsevier, vol. 81(C), pages 150-168.
    20. Warut Khern-am-nuai & Karthik Kannan & Hossein Ghasemkhani, 2018. "Extrinsic versus Intrinsic Rewards for Contributing Reviews in an Online Platform," Information Systems Research, INFORMS, vol. 29(4), pages 871-892, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:10:y:2016:i:3:p:762-775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.