IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v41y2024i2p265-281.html
   My bibliography  Save this article

Mobile ad fraud: Empirical patterns in publisher and advertising campaign data

Author

Listed:
  • Liang, Yitian (Sky)
  • Chen, Xinlei (Jack)
  • Chen, Yuxin
  • Xiao, Ping
  • Zhang, Jinglong

Abstract

Ad fraud has serious consequences for brands. It also contaminates academic research if scholars neglect a significant level of ad fraud in their data. However, only limited theoretical work has addressed this topic, and empirical research is scarce. In this article, we take a first step to document empirical patterns of mobile ad fraud using two datasets. The datasets are commonly available to buyers of advertising services, and the types of ad fraud studied are significant in the advertising market. We identify some app and campaign characteristics correlated with ad fraud, and uncover methods used by fraudsters to conceal the fraud. They often make the ad fraud proportional to the daily traffic but lowering the ratio of ad fraud on high-traffic days. However, when traffic is unstable, they change strategy to use ad fraud to smooth out the traffic. Meanwhile, in advertising campaigns, the fraudsters allocate most part of fraud during the middle of campaign period, an attempt to reduce the risk of being detected. These findings not only help practitioners and academic researchers determine the extent of ad fraud in the data but also provide stylized facts for future research on theoretical modeling of ad fraud.

Suggested Citation

  • Liang, Yitian (Sky) & Chen, Xinlei (Jack) & Chen, Yuxin & Xiao, Ping & Zhang, Jinglong, 2024. "Mobile ad fraud: Empirical patterns in publisher and advertising campaign data," International Journal of Research in Marketing, Elsevier, vol. 41(2), pages 265-281.
  • Handle: RePEc:eee:ijrema:v:41:y:2024:i:2:p:265-281
    DOI: 10.1016/j.ijresmar.2023.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016781162300068X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2023.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Chen & Varghese S. Jacob & Suresh Radhakrishnan & Young U. Ryu, 2015. "Can Payment-per-Click Induce Improvements in Click Fraud Identification Technologies?," Information Systems Research, INFORMS, vol. 26(4), pages 754-772, December.
    2. Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
    3. Michael Braun & Wendy W. Moe, 2013. "Online Display Advertising: Modeling the Effects of Multiple Creatives and Individual Impression Histories," Marketing Science, INFORMS, vol. 32(5), pages 753-767, September.
    4. Michelle Andrews & Xueming Luo & Zheng Fang & Anindya Ghose, 2016. "Mobile Ad Effectiveness: Hyper-Contextual Targeting with Crowdedness," Marketing Science, INFORMS, vol. 35(2), pages 218-233, March.
    5. Przemyslaw Jeziorski & Ilya Segal, 2015. "What Makes Them Click: Empirical Analysis of Consumer Demand for Search Advertising," American Economic Journal: Microeconomics, American Economic Association, vol. 7(3), pages 24-53, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengzhou Zhuang & Eric (Er) Fang & Jongkuk Lee & Xiaoling Li, 2021. "The Effects of Price Rank on Clicks and Conversions in Product List Advertising on Online Retail Platforms," Information Systems Research, INFORMS, vol. 32(4), pages 1412-1430, December.
    2. Garrett Johnson & Julian Runge & Eric Seufert, 2022. "Privacy-Centric Digital Advertising: Implications for Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 9(1), pages 49-54, June.
    3. Omid Rafieian, 2023. "Optimizing User Engagement Through Adaptive Ad Sequencing," Marketing Science, INFORMS, vol. 42(5), pages 910-933, September.
    4. Jiwoong Shin & Jungju Yu, 2021. "Targeted Advertising and Consumer Inference," Marketing Science, INFORMS, vol. 40(5), pages 900-922, September.
    5. Xiang Hui & Meng Liu & Tat Chan, 2023. "Targeted incentives, broad impacts: Evidence from an E-commerce platform," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 493-517, December.
    6. Xiang Hui & Meng Liu & Tat Chan, 2022. "Targeted Incentives, Broad Impacts: Evidence from an E-commerce Platform," CESifo Working Paper Series 9894, CESifo.
    7. Stylianos Despotakis & Jungju Yu, 2023. "Multidimensional Targeting and Consumer Response," Management Science, INFORMS, vol. 69(8), pages 4518-4540, August.
    8. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    9. Ming Chen & Sareh Nabi & Marciano Siniscalchi, 2023. "Advancing Ad Auction Realism: Practical Insights & Modeling Implications," Papers 2307.11732, arXiv.org, revised Apr 2024.
    10. Vinh Truong, 2024. "Optimizing mobile in-app advertising effectiveness using app publishers-controlled factors," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(4), pages 925-943, December.
    11. Yassine Lefouili & Leonardo Madio & Ying Lei Toh, 2024. "Privacy Regulation and Quality‐Enhancing Innovation," Journal of Industrial Economics, Wiley Blackwell, vol. 72(2), pages 662-684, June.
    12. Dowling, Katharina & Manchanda, Puneet & Spann, Martin, 2021. "The existence and persistence of the pay-per-use bias in car sharing services," International Journal of Research in Marketing, Elsevier, vol. 38(2), pages 329-342.
    13. Ryo Kato & Takahiro Hoshino & Daisuke Moriwaki & Shintaro Okazaki, 2022. "Mobile Targeting: Exploring the Role of Area Familiarity, Store Knowledge, and Promotional Incentives," Discussion Paper Series DP2022-10, Research Institute for Economics & Business Administration, Kobe University.
    14. Haoyan Sun & Ming Fan & Yong Tan, 2020. "An Empirical Analysis of Seller Advertising Strategies in an Online Marketplace," Information Systems Research, INFORMS, vol. 31(1), pages 37-56, March.
    15. Sameer Mehta & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2020. "Sustaining a Good Impression: Mechanisms for Selling Partitioned Impressions at Ad Exchanges," Information Systems Research, INFORMS, vol. 31(1), pages 126-147, March.
    16. Ali Goli & Simha Mummalaneni & Pradeep K. Chintagunta & Sanjay K. Dhar, 2022. "Show and Sell: Studying the Effects of Branded Cigarette Product Placement in TV Shows on Cigarette Sales," Marketing Science, INFORMS, vol. 41(6), pages 1163-1180, November.
    17. Ganesh Iyer & T. Tony Ke, 2024. "Competitive Model Selection in Algorithmic Targeting," Marketing Science, INFORMS, vol. 43(6), pages 1226-1241, November.
    18. Alaoui, Larbi & Germano, Fabrizio, 2020. "Time scarcity and the market for news," Journal of Economic Behavior & Organization, Elsevier, vol. 174(C), pages 173-195.
    19. Christian Almer & Stefan Boes & Stephan Nüesch, 2017. "Adjustments in the housing market after an environmental shock: evidence from a large-scale change in aircraft noise exposure," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 918-938.
    20. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:41:y:2024:i:2:p:265-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.