A modular framework for FAIR shallow landslide susceptibility mapping based on machine learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-024-06563-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiangang Hao & Tin Kam Ho, 2019. "Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 348-361, June.
- Jie Dou & Hiromitsu Yamagishi & Hamid Pourghasemi & Ali Yunus & Xuan Song & Yueren Xu & Zhongfan Zhu, 2015. "An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1749-1776, September.
- Chuhan Wang & Qigen Lin & Leibin Wang & Tong Jiang & Buda Su & Yanjun Wang & Sanjit Kumar Mondal & Jinlong Huang & Ying Wang, 2022. "The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1967-1988, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
- Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha & Ashraf Osman, 2022. "Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia," Land, MDPI, vol. 11(6), pages 1-21, June.
- Xianyu Yu & Tingting Xiong & Weiwei Jiang & Jianguo Zhou, 2023. "Comparative Assessment of the Efficacy of the Five Kinds of Models in Landslide Susceptibility Map for Factor Screening: A Case Study at Zigui-Badong in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 15(1), pages 1-26, January.
- Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
- Harold Doran, 2023. "A Collection of Numerical Recipes Useful for Building Scalable Psychometric Applications," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 37-69, February.
- Ehsan Harirchian & Tom Lahmer & Shahla Rasulzade, 2020. "Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network," Energies, MDPI, vol. 13(8), pages 1-16, April.
- Fang Zou & Qingming Zhan & Weisi Zhang, 2018. "Quantifying the impact of human activities on geological hazards in mountainous areas: evidence from Shennongjia, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 137-155, January.
- Jonmenjoy Barman & Brototi Biswas & K. Srinivasa Rao, 2024. "A hybrid integration of analytical hierarchy process (AHP) and the multiobjective optimization on the basis of ratio analysis (MOORA) for landslide susceptibility zonation of Aizawl, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8571-8596, July.
- Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
- Ayed Alwadain & Rao Faizan Ali & Amgad Muneer, 2023. "Estimating Financial Fraud through Transaction-Level Features and Machine Learning," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
- Lanqian Feng & Mingming Guo & Wenlong Wang & Yulan Chen & Qianhua Shi & Wenzhao Guo & Yibao Lou & Hongliang Kang & Zhouxin Chen & Yanan Zhu, 2022. "Comparative Analysis of Machine Learning Methods and a Physical Model for Shallow Landslide Risk Modeling," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
- Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
- Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
- Taleh Agasiev & Anatoly Karpenko, 2024. "Exploratory Landscape Validation for Bayesian Optimization Algorithms," Mathematics, MDPI, vol. 12(3), pages 1-21, January.
- Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
- Rongwei Li & Shucheng Tan & Mingfei Zhang & Shaohan Zhang & Haishan Wang & Lei Zhu, 2024. "Geological Disaster Susceptibility Evaluation Using a Random Forest Empowerment Information Quantity Model," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
- Quang-Khanh Nguyen & Dieu Tien Bui & Nhat-Duc Hoang & Phan Trong Trinh & Viet-Ha Nguyen & Isık Yilmaz, 2017. "A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
- Wamba Danny Love Djukem & Anika Braun & Armand Sylvain Ludovic Wouatong & Christian Guedjeo & Katrin Dohmen & Pierre Wotchoko & Tomas Manuel Fernandez-Steeger & Hans-Balder Havenith, 2020. "Effect of Soil Geomechanical Properties and Geo-Environmental Factors on Landslide Predisposition at Mount Oku, Cameroon," IJERPH, MDPI, vol. 17(18), pages 1-27, September.
- Muhammad Khalid Anser & Munir Ahmad & Muhammad Azhar Khan & Abdelmohsen A. Nassani & Mohamed Haffar & Khalid Zaman, 2024. "The “IMPACT” of Web of Science Coverage and Scientific and Technical Journal Articles on the World’s Income: Scientific Informatics and the Knowledge-Driven Economy," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 3147-3173, March.
- Jian Zhou & Shan Jiang & Sanjit Kumar Mondal & Jinlong Huang & Buda Su & Zbigniew W. Kundzewicz & Ziyan Chen & Runhong Xu & Tong Jiang, 2022. "China’s Socioeconomic and CO 2 Status Concerning Future Land-Use Change under the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
More about this item
Keywords
Shallow landslides; Hazard mapping; Machine learning; Random Forest; FAIR data; Shallow landslide susceptibility;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:9:d:10.1007_s11069-024-06563-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.