IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v33y2021ics1874548221000159.html
   My bibliography  Save this article

Unsupervised machine learning techniques to prevent faults in railroad switch machines

Author

Listed:
  • Soares, Nielson
  • Aguiar, Eduardo Pestana de
  • Souza, Amanda Campos
  • Goliatt, Leonardo

Abstract

Railroad switch machines are essential electromechanical equipment in a railway network, and the occurrence of failures in such equipment can cause railroad interruptions and lead to potential economic losses. Thus, early diagnosis of these failures can represent a reduction in costs and an increase in productivity. This paper aims to propose a predictive model based on computational intelligence techniques, to solve this problem. The applied methodology includes feature extraction and selection procedures based on hypothesis tests and unsupervised machine learning models. The proposed model was tested in a database made available by a Brazilian railway company and proved to be efficient once it has considered critical operations conducted in the vicinity of the ones classified as faults.

Suggested Citation

  • Soares, Nielson & Aguiar, Eduardo Pestana de & Souza, Amanda Campos & Goliatt, Leonardo, 2021. "Unsupervised machine learning techniques to prevent faults in railroad switch machines," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
  • Handle: RePEc:eee:ijocip:v:33:y:2021:i:c:s1874548221000159
    DOI: 10.1016/j.ijcip.2021.100423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548221000159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2021.100423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tudor Barbu, 2013. "Variational Image Denoising Approach with Diffusion Porous Media Flow," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, January.
    2. García, Fausto P. & Pedregal, Diego J. & Roberts, Clive, 2010. "Time series methods applied to failure prediction and detection," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 698-703.
    3. García Márquez, Fausto Pedro & Schmid, Felix, 2007. "A digital filter-based approach to the remote condition monitoring of railway turnouts," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 830-840.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Tan, Tu Guang & Jang, Sunghyon & Yamaguchi, Akira, 2019. "A novel method for risk-informed decision-making under non-ideal Instrumentation and Control conditions through the application of Bayes’ Theorem," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 463-472.
    3. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    4. Fausto Pedro García Márquez & Diego J. Pedregal & Clive Roberts, 2015. "New methods for the condition monitoring of level crossings," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(5), pages 878-884, April.
    5. Narender Singh & Dibakor Boruah & Jeroen D. M. De Kooning & Wim De Waele & Lieven Vandevelde, 2023. "Impact Assessment of Dynamic Loading Induced by the Provision of Frequency Containment Reserve on the Main Bearing Lifetime of a Wind Turbine," Energies, MDPI, vol. 16(6), pages 1-14, March.
    6. Diego Pedregal & Fausto García & Clive Roberts, 2009. "An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions," Annals of Operations Research, Springer, vol. 166(1), pages 109-124, February.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    9. Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2016. "A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines," Energies, MDPI, vol. 9(1), pages 1-14, January.
    10. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    11. Bian, Chong & Yang, Shunkun & Huang, Tingting & Xu, Qingyang & Liu, Jie & Zio, Enrico, 2019. "Degradation state mining and identification for railway point machines," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 432-443.
    12. Aisha Sa’ad & Aimé C. Nyoungue & Zied Hajej, 2021. "Improved Preventive Maintenance Scheduling for a Photovoltaic Plant under Environmental Constraints," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    13. Abu-Samah, A. & Shahzad, M.K. & Zamai, E., 2017. "Bayesian based methodology for the extraction and validation of time bound failure signatures for online failure prediction," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 616-628.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:33:y:2021:i:c:s1874548221000159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.