IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v20y2018icp68-84.html
   My bibliography  Save this article

A practical implementation of unconditional security for the IEC 60780-5-101 SCADA protocol

Author

Listed:
  • CHERIFI, Tarek
  • HAMAMI, Lamia

Abstract

SCADA systems are used across the critical infrastructure to monitor and control vital industrial processes. Traditional firewalls, authentication mechanisms, and cryptographic algorithms and protocols are inadequate to secure SCADA systems and the underlying industrial processes from cyber attacks. This paper describes a novel approach for providing a high level of secrecy to the IEC 60870-5-101 protocol, a non-routable open SCADA communications protocol used in the electric power industry. The proposed approach incorporates a secrecy layer between the physical and link layers of the enhanced performance architecture of the IEC 60870-5-101 protocol. The secrecy layer is an implementation of Shannon’s notion of an unconditionally-secure system in which perfect secrecy and strong ideal secrecy are leveraged to guarantee the authenticity, integrity and confidentiality of SCADA data transmission. Experimental results using an industrial control testbed confirm that the proposed approach satisfies the temporal constraints imposed on SCADA systems used in electrical substations.

Suggested Citation

  • CHERIFI, Tarek & HAMAMI, Lamia, 2018. "A practical implementation of unconditional security for the IEC 60780-5-101 SCADA protocol," International Journal of Critical Infrastructure Protection, Elsevier, vol. 20(C), pages 68-84.
  • Handle: RePEc:eee:ijocip:v:20:y:2018:i:c:p:68-84
    DOI: 10.1016/j.ijcip.2017.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548216301834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2017.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yu-Lun & Cárdenas, Alvaro A. & Amin, Saurabh & Lin, Zong-Syun & Tsai, Hsin-Yi & Sastry, Shankar, 2009. "Understanding the physical and economic consequences of attacks on control systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(3), pages 73-83.
    2. Erez, Noam & Wool, Avishai, 2015. "Control variable classification, modeling and anomaly detection in Modbus/TCP SCADA systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 59-70.
    3. Alcaraz, Cristina & Zeadally, Sherali, 2015. "Critical infrastructure protection: Requirements and challenges for the 21st century," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 53-66.
    4. Genge, Béla & Graur, Flavius & Haller, Piroska, 2015. "Experimental assessment of network design approaches for protecting industrial control systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 11(C), pages 24-38.
    5. Knowles, William & Prince, Daniel & Hutchison, David & Disso, Jules Ferdinand Pagna & Jones, Kevin, 2015. "A survey of cyber security management in industrial control systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 9(C), pages 52-80.
    6. Huitsing, Peter & Chandia, Rodrigo & Papa, Mauricio & Shenoi, Sujeet, 2008. "Attack taxonomies for the Modbus protocols," International Journal of Critical Infrastructure Protection, Elsevier, vol. 1(C), pages 37-44.
    7. Goldenberg, Niv & Wool, Avishai, 2013. "Accurate modeling of Modbus/TCP for intrusion detection in SCADA systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(2), pages 63-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouzi Harrou & Benamar Bouyeddou & Abdelkader Dairi & Ying Sun, 2024. "Exploiting Autoencoder-Based Anomaly Detection to Enhance Cybersecurity in Power Grids," Future Internet, MDPI, vol. 16(6), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jarmakiewicz, Jacek & Parobczak, Krzysztof & Maślanka, Krzysztof, 2017. "Cybersecurity protection for power grid control infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 18(C), pages 20-33.
    2. Rodofile, Nicholas R. & Radke, Kenneth & Foo, Ernest, 2019. "Extending the cyber-attack landscape for SCADA-based critical infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 14-35.
    3. Cheng-Hui Chou & Chi-Che Wu & Kuan-Chu Lu & I-Hsien Liu & Tien-Hsiang Chang & Chu-Fen Li & Jung-Shian Li, 2018. "Modbus Packet Analysis and Attack Mode for SCADA System," Journal of ICT, Design, Engineering and Technological Science, Juhriyansyah Dalle, vol. 2(2), pages 30-35.
    4. Vlad Daniel SAVIN & Costel SERBAN, 2019. "Cybersecurity Vulnerabilities And Threats Of Scada Systems In Critical Infrastructures," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 234-237, November.
    5. SICARD, Franck & ZAMAI, Éric & FLAUS, Jean-Marie, 2019. "An approach based on behavioral models and critical states distance notion for improving cybersecurity of industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 584-603.
    6. Yadav, Geeta & Paul, Kolin, 2021. "Architecture and security of SCADA systems: A review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    7. Monzer, Mohamad-Houssein & Beydoun, Kamal & Ghaith, Alaa & Flaus, Jean-Marie, 2022. "Model-based IDS design for ICSs," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Ghaleb, Asem & Zhioua, Sami & Almulhem, Ahmad, 2018. "On PLC network security," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 62-69.
    9. Mohammed Alghassab, 2021. "Analyzing the Impact of Cybersecurity on Monitoring and Control Systems in the Energy Sector," Energies, MDPI, vol. 15(1), pages 1-21, December.
    10. Urrea, Claudio & Morales, Claudio & Kern, John, 2016. "Implementation of error detection and correction in the Modbus-RTU serial protocol," International Journal of Critical Infrastructure Protection, Elsevier, vol. 15(C), pages 27-37.
    11. Erez, Noam & Wool, Avishai, 2015. "Control variable classification, modeling and anomaly detection in Modbus/TCP SCADA systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 59-70.
    12. Rahman, Ayesha & Mustafa, Ghulam & Khan, Abdul Qayyum & Abid, Muhammad & Durad, Muhammad Hanif, 2022. "Launch of denial of service attacks on the modbus/TCP protocol and development of its protection mechanisms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    13. Vosughi, Amirkhosro & Tamimi, Ali & King, Alexandra Beatrice & Majumder, Subir & Srivastava, Anurag K., 2022. "Cyber–physical vulnerability and resiliency analysis for DER integration: A review, challenges and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Bell, Alison J.C. & Rogers, M. Brooke & Pearce, Julia M., 2019. "The insider threat: Behavioral indicators and factors influencing likelihood of intervention," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 166-176.
    15. Eric DuBois & Ashley Peper & Laura A. Albert, 2023. "Interdicting Attack Plans with Boundedly Rational Players and Multiple Attackers: An Adversarial Risk Analysis Approach," Decision Analysis, INFORMS, vol. 20(3), pages 202-219, September.
    16. Bowen Xing & Yafeng Jiang & Yuqing Liu & Shouqi Cao, 2018. "Risk Data Analysis Based Anomaly Detection of Ship Information System," Energies, MDPI, vol. 11(12), pages 1-16, December.
    17. Genge, Béla & Graur, Flavius & Haller, Piroska, 2015. "Experimental assessment of network design approaches for protecting industrial control systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 11(C), pages 24-38.
    18. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    19. Yuan, Shuaiqi & Reniers, Genserik & Yang, Ming, 2024. "Integrated management of safety and security barriers in chemical plants to cope with emerging cyber-physical attack risks under uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Nai Fovino, Igor & Carcano, Andrea & Masera, Marcelo & Trombetta, Alberto, 2009. "An experimental investigation of malware attacks on SCADA systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 139-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:20:y:2018:i:c:p:68-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.