IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp1231-1243.html
   My bibliography  Save this article

Out of control: Fluctuation of cascading dynamics in networks

Author

Listed:
  • Wang, Jianwei
  • Cai, Lin
  • Xu, Bo
  • Li, Peng
  • Sun, Enhui
  • Zhu, Zhiguo

Abstract

Applying two preferential selection mechanisms of flow destination, we develop two new methods to quantify the initial load of a node, where the flow is transported along the shortest path between two nodes. We propose a simple cascading model and study cascading dynamics induced by attacking the node with the highest load in some synthetic and actual networks. Surprisingly, we observe the abnormal fluctuation of cascading dynamics, i.e., more damage can be triggered if we spend significantly higher cost to protect a network. In particular, this phenomenon is independent of the initial flow distribution and the preferential selection mechanisms of flow destination. However, it remains unclear which specific structural patterns may affect the fluctuation of cascading dynamics. In this paper, we examine the local evolution of the cascading propagation by constructing some special networks. We show that revivals of some nodes in the double ring structure facilitate the transportation of the flow between two unconnected sub-networks, cause more damage and subsequently lead to the abnormal fluctuation of cascading dynamics. Compared with the traditional definition of the betweenness, we adopt two new proposed methods to further evaluate the resilience of several actual networks. We find that some real world networks reach the strongest resilience level against cascading failures in our preferential selection mechanisms of flow destination. Moreover, we explore how to use the minimum cost to maximize the resilience of the studied networks.

Suggested Citation

  • Wang, Jianwei & Cai, Lin & Xu, Bo & Li, Peng & Sun, Enhui & Zhu, Zhiguo, 2016. "Out of control: Fluctuation of cascading dynamics in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1231-1243.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:1231-1243
    DOI: 10.1016/j.physa.2016.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302977
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    2. Charles D. Brummitt & Teruyoshi Kobayashi, 2015. "Cascades in multiplex financial networks with debts of different seniority," Papers 1501.05400, arXiv.org, revised May 2015.
    3. J. Lorenz & S. Battiston & F. Schweitzer, 2009. "Systemic risk in a unifying framework for cascading processes on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 441-460, October.
    4. Cao, Xian-Bin & Hong, Chen & Du, Wen-Bo & Zhang, Jun, 2013. "Improving the network robustness against cascading failures by adding links," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 35-40.
    5. Jianwei Wang, 2012. "Optimized Scale-Free Networks Against Cascading Failures," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(11), pages 1-12.
    6. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    7. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2013. "Understanding the cascading failures in Indian power grids with complex networks theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3273-3280.
    8. Wang, Jianwei, 2013. "Mitigation strategies on scale-free networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2257-2264.
    9. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    10. Claudio J. Tessone & Antonios Garas & Beniamino Guerra & Frank Schweitzer, "undated". "How big is too big? Critical Shocks for Systemic Failure Cascades," Working Papers ETH-RC-12-015, ETH Zurich, Chair of Systems Design.
    11. Wu, J.J. & Sun, H.J. & Gao, Z.Y., 2007. "Cascading failures on weighted urban traffic equilibrium networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 407-413.
    12. Wang, Jian-Wei, 2012. "Modeling cascading failures in complex networks based on radiate circle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4004-4011.
    13. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yi & Yang, Huang & Xie, Yuangcheng & Liu, Yang & Ren, Gang, 2023. "Adaptive robustness optimization against network cascading congestion induced by fluctuant load via a bilateral-adaptive strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianwei & Sun, Enhui & Xu, Bo & Li, Peng & Ni, Chengzhang, 2016. "Abnormal cascading failure spreading on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 695-701.
    2. Wang, Jianwei & Li, Yun & Zheng, Qiaofang, 2015. "Cascading load model in interdependent networks with coupled strength," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 242-253.
    3. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    4. Xia, Yongxiang & Zhang, Wenping & Zhang, Xuejun, 2016. "The effect of capacity redundancy disparity on the robustness of interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 561-568.
    5. Jiang, Yuan & Yan, Yuwei & Hong, Cheng & Yang, Songqing & Yu, Rongbin & Dai, Jiyang, 2022. "Multidirectional recovery strategy against failure," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    7. Didier Wernli & Lucas Böttcher & Flore Vanackere & Yuliya Kaspiarovich & Maria Masood & Nicolas Levrat, 2023. "Understanding and governing global systemic crises in the 21st century: A complexity perspective," Global Policy, London School of Economics and Political Science, vol. 14(2), pages 207-228, May.
    8. Shen, Yi & Song, Guohao & Xu, Huangliang & Xie, Yuancheng, 2020. "Model of node traffic recovery behavior and cascading congestion analysis in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Zhang, Wenping & Xia, Yongxiang & Ouyang, Bo & Jiang, Lurong, 2015. "Effect of network size on robustness of interconnected networks under targeted attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 80-88.
    10. Wang, Jianwei & Wang, Siyuan & Wang, Ziwei, 2022. "Robustness of spontaneous cascading dynamics driven by reachable area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    11. Gao, Xingle & Peng, Minfang & Tse, Chi K., 2022. "Robustness analysis of cyber-coupled power systems with considerations of interdependence of structures, operations and dynamic behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    12. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    13. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    14. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    15. He, Xiang & Yuan, Yongbo, 2022. "Revisiting driving factor influences on uncertain cascading disaster evolutions: From perspective of global sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    16. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    17. Cui, Pengshuai & Zhu, Peidong & Wang, Ke & Xun, Peng & Xia, Zhuoqun, 2018. "Enhancing robustness of interdependent network by adding connectivity and dependence links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 185-197.
    18. Jin, Wei-Xin & Song, Ping & Liu, Guo-Zhu & Stanley, H. Eugene, 2015. "The cascading vulnerability of the directed and weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 302-325.
    19. Aymeric Vié & Alfredo J. Morales, 2021. "How Connected is Too Connected? Impact of Network Topology on Systemic Risk and Collapse of Complex Economic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1327-1351, April.
    20. Rebekka Burkholz & Matt V. Leduc & Antonios Garas & Frank Schweitzer, 2015. "Systemic risk in multiplex networks with asymmetric coupling and threshold feedback," Papers 1506.06664, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:1231-1243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.