IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v95y2016icp107-112.html
   My bibliography  Save this article

An ordinal minimax theorem

Author

Listed:
  • Brandt, Felix
  • Brill, Markus
  • Suksompong, Warut

Abstract

In the early 1950s Lloyd Shapley proposed an ordinal and set-valued solution concept for zero-sum games called weak saddle. We show that all weak saddles of a given zero-sum game are interchangeable and equivalent. As a consequence, every such game possesses a unique set-based value.

Suggested Citation

  • Brandt, Felix & Brill, Markus & Suksompong, Warut, 2016. "An ordinal minimax theorem," Games and Economic Behavior, Elsevier, vol. 95(C), pages 107-112.
  • Handle: RePEc:eee:gamebe:v:95:y:2016:i:c:p:107-112
    DOI: 10.1016/j.geb.2015.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825615001670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2015.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Le Breton & John Duggan, 2001. "Mixed refinements of Shapley's saddles and weak tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(1), pages 65-78.
    2. Duggan, John & Le Breton, Michel, 1996. "Dutta's Minimal Covering Set and Shapley's Saddles," Journal of Economic Theory, Elsevier, vol. 70(1), pages 257-265, July.
    3. Dutta, Bhaskar, 1988. "Covering sets and a new condorcet choice correspondence," Journal of Economic Theory, Elsevier, vol. 44(1), pages 63-80, February.
    4. Samuelson, Larry, 1992. "Dominated strategies and common knowledge," Games and Economic Behavior, Elsevier, vol. 4(2), pages 284-313, April.
    5. McKelvey, Richard D. & Ordeshook, Peter C., 1976. "Symmetric Spatial Games Without Majority Rule Equilibria," American Political Science Review, Cambridge University Press, vol. 70(4), pages 1172-1184, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Anesi, 2012. "A new old solution for weak tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 919-930, October.
    2. De Donder, Philippe & Le Breton, Michel & Truchon, Michel, 2000. "Choosing from a weighted tournament1," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 85-109, July.
    3. Banks, Jeffrey S. & Duggan, John & Le Breton, Michel, 2002. "Bounds for Mixed Strategy Equilibria and the Spatial Model of Elections," Journal of Economic Theory, Elsevier, vol. 103(1), pages 88-105, March.
    4. LASLIER, Jean-François & PICARD, Nathalie, 2000. "Distributive politics: does electoral competition promote inequality ?," LIDAM Discussion Papers CORE 2000022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. John Duggan & Michel Le Breton, 2014. "Choice-theoretic Solutions for Strategic Form Games," RCER Working Papers 580, University of Rochester - Center for Economic Research (RCER).
    6. John Duggan, 2013. "Uncovered sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 489-535, September.
    7. Felix Brandt & Markus Brill & Paul Harrenstein, 2018. "Extending tournament solutions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(2), pages 193-222, August.
    8. Vincent Anesi, 2012. "A new old solution for weak tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 919-930, October.
    9. Brandt, Felix & Harrenstein, Paul & Seedig, Hans Georg, 2017. "Minimal extending sets in tournaments," Mathematical Social Sciences, Elsevier, vol. 87(C), pages 55-63.
    10. Lavi, Ron & Nisan, Noam, 2015. "Online ascending auctions for gradually expiring items," Journal of Economic Theory, Elsevier, vol. 156(C), pages 45-76.
    11. Sent, Esther-Mirjam, 2004. "The legacy of Herbert Simon in game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 53(3), pages 303-317, March.
    12. Asheim, G.B. & Dufwenberg, M., 1996. "Admissibility and Common Knowledge," Discussion Paper 1996-16, Tilburg University, Center for Economic Research.
    13. Catonini, Emiliano & De Vito, Nicodemo, 2024. "Cautious belief and iterated admissibility," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    14. Hudry, Olivier, 2009. "A survey on the complexity of tournament solutions," Mathematical Social Sciences, Elsevier, vol. 57(3), pages 292-303, May.
    15. Asheim, Geir B. & Dufwenberg, Martin, 2003. "Admissibility and common belief," Games and Economic Behavior, Elsevier, vol. 42(2), pages 208-234, February.
    16. Cubitt, Robin P. & Sugden, Robert, 2011. "The reasoning-based expected utility procedure," Games and Economic Behavior, Elsevier, vol. 71(2), pages 328-338, March.
    17. Borm, Peter & van den Brink, Rene & Levinsky, Rene & Slikker, Marco, 2004. "On two new social choice correspondences," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 51-68, January.
    18. Bo Chen & Rajat Deb, 2018. "The role of aggregate information in a binary threshold game," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(3), pages 381-414, October.
    19. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2019. "Comprehensive rationalizability," Games and Economic Behavior, Elsevier, vol. 116(C), pages 185-202.
    20. Geir B. Asheim & Martin Dufwenberg, 2003. "Deductive Reasoning in Extensive Games," Economic Journal, Royal Economic Society, vol. 113(487), pages 305-325, April.

    More about this item

    Keywords

    Zero-sum games; Shapley; Saddles; Minimax theorem;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:95:y:2016:i:c:p:107-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.