IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v74y2012i1p332-351.html
   My bibliography  Save this article

The strategic value of recall

Author

Listed:
  • Peretz, Ron

Abstract

This work studies the value of two-person zero-sum repeated games in which at least one of the players is restricted to (mixtures of) bounded recall strategies. A (pure) k-recall strategy is a strategy that relies only on the last k periods of history. This work improves previous results (Lehrer, 1988; Neyman and Okada, 2009) on repeated games with bounded recall. We provide an explicit formula for the asymptotic value of the repeated game as a function of the one-stage game, the duration of the repeated game, and the recall of the agents.

Suggested Citation

  • Peretz, Ron, 2012. "The strategic value of recall," Games and Economic Behavior, Elsevier, vol. 74(1), pages 332-351.
  • Handle: RePEc:eee:gamebe:v:74:y:2012:i:1:p:332-351
    DOI: 10.1016/j.geb.2011.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825611000996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2011.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Discussion Paper Series dp476, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    2. Neyman, Abraham & Okada, Daijiro, 2009. "Growth of strategy sets, entropy, and nonstationary bounded recall," Games and Economic Behavior, Elsevier, vol. 66(1), pages 404-425, May.
    3. repec:dau:papers:123456789/6127 is not listed on IDEAS
    4. Gilad Bavly & Abraham Neyman, 2003. "Online Concealed Correlation by Boundedly Rational Players," Discussion Paper Series dp336, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    5. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    6. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
    7. Lehrer, Ehud, 1988. "Repeated games with stationary bounded recall strategies," Journal of Economic Theory, Elsevier, vol. 46(1), pages 130-144, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.
    2. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    3. Ron Peretz, 2013. "Correlation through bounded recall strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 867-890, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ron Peretz, 2011. "Correlation through Bounded Recall Strategies," Discussion Paper Series dp579, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    2. Ron Peretz, 2013. "Correlation through bounded recall strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 867-890, November.
    3. Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.
    4. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    5. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    6. repec:dau:papers:123456789/6127 is not listed on IDEAS
    7. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    8. Neyman, Abraham & Okada, Daijiro, 2009. "Growth of strategy sets, entropy, and nonstationary bounded recall," Games and Economic Behavior, Elsevier, vol. 66(1), pages 404-425, May.
    9. Olivier Gossner & Tristan Tomala, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 413-424, May.
    10. Abraham Neyman & Daijiro Okada, 2005. "Growth of Strategy Sets, Entropy, and Nonstationary Bounded Recall," Levine's Bibliography 122247000000000920, UCLA Department of Economics.
    11. Ron Peretz, 2007. "The Strategic Value of Recall," Discussion Paper Series dp470, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    12. Andriy Zapechelnyuk, 2008. "Better-Reply Dynamics with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 869-879, November.
    13. Ron Peretz, 2007. "The Strategic Value of Recall," Levine's Bibliography 122247000000001774, UCLA Department of Economics.
    14. Olivier Gossner & Rida Laraki & Tristan Tomala, 2004. "Maxmin computation and optimal correlation in repeated games with signals," Working Papers hal-00242940, HAL.
    15. Olivier Gossner & Tristan Tomala, 2006. "Empirical Distributions of Beliefs Under Imperfect Observation," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 13-30, February.
    16. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Discussion Paper Series dp476, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    17. Hu, Tai-Wei, 2014. "Unpredictability of complex (pure) strategies," Games and Economic Behavior, Elsevier, vol. 88(C), pages 1-15.
    18. repec:dau:papers:123456789/6381 is not listed on IDEAS
    19. René Levínský & Abraham Neyman & Miroslav Zelený, 2020. "Should I remember more than you? Best responses to factored strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1105-1124, December.
    20. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    21. Andrés Perea & Elias Tsakas, 2019. "Limited focus in dynamic games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 571-607, June.
    22. Mehmet Barlo & Guilherme Carmona, 2007. "One - memory in repeated games," Nova SBE Working Paper Series wp500, Universidade Nova de Lisboa, Nova School of Business and Economics.

    More about this item

    Keywords

    Bounded recall; Bounded memory; Bounded rationality; Repeated games; Entropy; de Bruijn sequences;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:74:y:2012:i:1:p:332-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.